47 resultados para parallel sorting
Resumo:
K+ channels, which have been linked to regulation of electrogenic solute transport as well as Ca2+ influx, represent a locus in hepatocytes for the concerted actions of hormones that employ Ca2+ and cAMP as intracellular messengers. Despite considerable study, the single-channel basis for synergistic effects of Ca2+ and cAMP on hepatocellular K+ conductance is not well understood. To address this question, patch-clamp recording techniques were applied to a model liver cell line, HTC hepatoma cells. Increasing the cytosolic Ca2+ concentration ([Ca2+]i) in HTC cells, either by activation of purinergic receptors with ATP or by inhibition of intracellular Ca2+ sequestration with thapsigargin, activated low-conductance (9-pS) K+ channels. Studies with excised membrane patches suggested that these channels were directly activated by Ca2+. Exposure of HTC cells to a permeant cAMP analog, 8-(4-chlorophenylthio)-cAMP, also activated 9-pS K+ channels but did not change [Ca2+]i. In excised membrane patches, cAMP-dependent protein kinase (the downstream effector of cAMP) activated K+ channels with conductance and selectivity identical to those of channels activated by Ca2+. In addition, cAMP-dependent protein kinase activated a distinct K+ channel type (5 pS). These data represent the differential regulation of low-conductance K+ channels by signaling pathways mediated by Ca2+ and cAMP. Moreover, since low-conductance Ca(2+)-activated K+ channels have been identified in a variety of cell types, these findings suggest that differential regulation of K+ channels by hormones with distinct signaling pathways may provide a mechanism for hormonal control of solute transport and Ca(2+)-dependent cellular functions in the liver as well as other nonexcitable tissues.
Resumo:
PC12 cells habituate during repetitive stimulation with acetylcholine, bradykinin, or high potassium. Interspersing these stimulants did not affect the rate of habituation of the others, but it could modulate the amplitude of the norepinephrine secretion each could achieve. Stimulation with acetylcholine inhibited norepinephrine secretion caused by high potassium and bradykinin stimulation, while high potassium had no effect on acetylcholine or bradykinin, and bradykinin increased secretion caused by acetylcholine. Changes in norepinephrine secretion resulting from any of these stimulants correlated with changes in internal calcium levels. Cyclic AMP-, protein kinase C-, and calmodulin-dependent second messenger pathways all modulated norepinephrine secretion caused by acetylcholine and high potassium and showed a distinct hierarchy in their effectiveness. These data demonstrate that different receptor pathways can change the norepinephrine response of one another while not changing the levels of the molecules responsible for habituation.