121 resultados para p53 reactivation
Resumo:
The p53 tumor suppressor controls multiple cell cycle checkpoints regulating the mammalian response to DNA damage. To identify the mechanism by which p53 regulates G2, we have derived a human ovarian cell that undergoes p53-dependent G2 arrest at 32°C. We have found that p53 prevents G2/M transition by decreasing intracellular levels of cyclin B1 protein and attenuating the activity of the cyclin B1 promoter. Cyclin B1 is the regulatory subunit of the cdc2 kinase and is a protein required for mitotic initiation. The ability of p53 to control mitotic initiation by regulating intracellular cyclin B1 levels suggests that the cyclin B-dependent G2 checkpoint has a role in preventing neoplastic transformation.
Sustained activation of Ras/Raf/mitogen-activated protein kinase cascade by the tumor suppressor p53
Resumo:
The p53 tumor suppressor gene can inhibit proliferation transiently, induce permanent cell-cycle arrest/senescence, or cause apoptosis depending on the cellular context. The mitogen-activated protein kinase (MAPK) cascade is known to play a crucial role in cell proliferation and differentiation. Moreover, the duration and intensity of MAPK activation can profoundly influence the biological response observed. We demonstrated that a sustained activation of MAPK cascade could be induced by wild-type p53 expression but not by p21Waf1/Cip1. Furthermore, exposure of normal cells to DNA-damaging agents induced MAPK activation in a p53-dependent manner. Tumor-derived p53 mutants defective in DNA binding failed to activate MAPK, implying that p53 transcriptional activity is essential for this function. Finally, activation of MAPK by p53 was inhibited by expression of dominant-negative Ras (N17Ras) and Raf1 mutants, indicating that MAPK activation by p53 is mediated at a level upstream of Ras. All of these findings establish a biochemical link between p53 signaling and the Ras/Raf/MAPK cascade.
Resumo:
Several groups have attempted to develop gene therapy strategies to treat cancer via introduction of the wild-type (wt) p53 cDNA into cancer cells. Unfortunately, these approaches do not result in regulated expression of the p53 gene and do not reduce expression of the mutant p53 that is overexpressed in cancerous cells. These shortcomings may greatly limit the utility of this gene replacement approach. We describe an alternative strategy with trans-splicing ribozymes that can simultaneously reduce mutant p53 expression and restore wt p53 activity in various human cancers. The ribozyme accomplished such conversion by repairing defective p53 mRNAs with high fidelity and specificity. The corrected transcripts were translated to produce functional p53 that can transactivate p53-responsive promoters and down-modulate expression of the multidrug resistance (MDR1) gene promoter. The level of wt p53 activity generated was significant, resulting in a 23-fold induction of a p53-responsive promoter and a 3-fold reduction in MDR1 promoter expression in transfected cancer cells. Once efficient delivery systems are developed, this strategy should prove useful for making human cancers more responsive to p53 activity and more sensitive to chemotherapeutic agents.
Resumo:
Overexpression of the proto-oncogene MYC has been implicated in the genesis of diverse human cancers. One explanation for the role of MYC in tumorigenesis has been that this gene might drive cells inappropriately through the division cycle, leading to the relentless proliferation characteristic of the neoplastic phenotype. Herein, we report that the overexpression of MYC alone cannot sustain the division cycle of normal cells but instead leads to their arrest in G2. We used an inducible form of the MYC protein to stimulate normal human and rodent fibroblasts. The stimulated cells passed through G1 and S but arrested in G2 and frequently became aneuploid, presumably as a result of inappropriate reinitiation of DNA synthesis. Absence of the tumor suppressor gene p53 or its downstream effector p21 reduced the frequency of both G2 arrest and aneuploidy, apparently by compromising the G2 checkpoint control. Thus, relaxation of the G2 checkpoint may be an essential early event in tumorigenesis by MYC. The loss of p53 function seems to be one mechanism by which this relaxation commonly occurs. These findings dramatize how multiple genetic events can collaborate to produce neoplastic cells.
Resumo:
Neuronal models predict that retrieval of specific event information reactivates brain regions that were active during encoding of this information. Consistent with this prediction, this positron-emission tomography study showed that remembering that visual words had been paired with sounds at encoding activated some of the auditory brain regions that were engaged during encoding. After word-sound encoding, activation of auditory brain regions was also observed during visual word recognition when there was no demand to retrieve auditory information. Collectively, these observations suggest that information about the auditory components of multisensory event information is stored in auditory responsive cortex and reactivated at retrieval, in keeping with classical ideas about “redintegration,” that is, the power of part of an encoded stimulus complex to evoke the whole experience.
Resumo:
Induction of wild-type p53 in the ECV-304 bladder carcinoma cell line by infection with a p53 recombinant adenovirus (Ad5CMV-p53) resulted in extensive apoptosis and eventual death of nearly all of the cells. As a strategy to determine the molecular events important to p53-mediated apoptosis in these transformed cells, ECV-304 cells were selected for resistance to p53 by repeated infections with Ad5CMV-p53. We compared the expression of 5,730 genes in p53-resistant (DECV) and p53-sensitive ECV-304 cells by reverse transcription–PCR, Northern blotting, and DNA microarray analysis. The expression of 480 genes differed by 2-fold or more between the two p53-infected cell lines. A number of potential targets for p53 were identified that play roles in cell cycle regulation, DNA repair, redox control, cell adhesion, apoptosis, and differentiation. Proline oxidase, a mitochondrial enzyme involved in the proline/pyrroline-5-carboxylate redox cycle, was up-regulated by p53 in ECV but not in DECV cells. Pyrroline-5-carboxylate (P5C), a proline-derived metabolite generated by proline oxidase, inhibited the proliferation and survival of ECV-304 and DECV cells and induced apoptosis in both cell lines. A recombinant proline oxidase protein tagged with a green fluorescent protein at the amino terminus localized to mitochondria and induced apoptosis in p53-null H1299 non-small cell lung carcinoma cells. The results directly implicate proline oxidase and the proline/P5C pathway in p53-induced growth suppression and apoptosis.
Resumo:
The DNA binding activity of p53 is crucial for its tumor suppressor function and is subject to tight regulation. Previous studies revealed that the inhibitory function of the p53 C terminus is implicated in the latent, low affinity sequence-specific DNA binding activity of p53 in the uninduced state. Sequence-specific DNA binding of p53 has been shown to be activated by several posttranslational modifications and interacting proteins that target predominantly the C terminus. Moreover, several authors have shown that synthetic peptides corresponding to p53 C-terminal sequences activate p53 sequence-specific DNA binding. In an effort to identify the interaction site of p53 with these activating peptides we assessed complex formation between p53 deletion constructs and C-terminal activating peptides by peptide affinity precipitation. This study revealed that two distal regions of the p53 molecule contribute synergistically to the interaction with activating C-terminal peptides: amino acids 80–93 and 364–393. The C-terminal residues 364–393 are already well characterized as having negative regulatory function. DNA binding analyses with these deletion constructs reveal a comparable negative regulatory activity for residues 80–93, defining this region as a previously unidentified negative regulatory domain of p53. Furthermore, synthetic peptides spanning this newly identified proline-rich negative regulatory region (residues 80–93) are able to activate p53 sequence-specific DNA binding in vitro. We suggest that both negative regulatory regions, residues 80–93 and 364–393, contribute cooperatively to the maintenance of the latent, low-affinity DNA binding conformation of p53.
Resumo:
Testicular cancers respond favorably to chemotherapy with the platinum-containing drug cis-diamminedichloroplatinum(II) (cisplatin). One factor that could explain the efficacy of cisplatin is the low frequency of p53 mutations observed in this tumor type. The present study examines the p53-mediated responses in murine testicular teratocarcinoma cells exposed to the drug. Cisplatin treatment of teratocarcinoma cells with a wild-type p53 gene resulted in accumulation of the p53 protein through posttranscriptional mechanisms; induction of p53-target genes was also observed. Drug treatment resulted in rapid apoptosis in p53-wild-type cells but not in p53−/− teratocarcinoma cells. In the latter cells, cisplatin exposure caused prolonged cell cycle arrest accompanied by induction of the p21 gene. Clonogenic assays demonstrated that the p53 mutation did not confer resistance to cisplatin. These experiments suggest that cisplatin inhibits cellular proliferation of testicular teratocarcinoma cells by two possible mechanisms, p53-dependent apoptosis and p53-independent cell cycle arrest.
Resumo:
The thermodynamic stability and oligomerization status of the tumor suppressor p53 tetramerization domain have been studied experimentally and theoretically. A series of hydrophilic mutations at Met-340 and Leu-344 of human p53 were designed to disrupt the hydrophobic dimer–dimer interface of the tetrameric oligomerization domain of p53 (residues 325–355). Meanfield calculations of the free energy of the solvated mutants as a function of interdimer distance were compared with experimental data on the thermal stability and oligomeric state (tetramer, dimer, or equilibrium mixture of both) of each mutant. The calculations predicted a decreasing stability and oligomeric state for the following amino acids at residue 340: Met (tetramer) > Ser Asp, His, Gln, > Glu, Lys (dimer), whereas the experimental results showed the following order: Met (tetramer) > Ser > Gln > His, Lys > Asp, Glu (dimers). For residue 344, the calculated trend was Leu (tetramer) > Ala > Arg, Gln, Lys (dimer), and the experimental trend was Leu (tetramer) > Ala, Arg, Gln, Lys (dimer). The discrepancy for the lysine side chain at residue 340 is attributed to the dual nature of lysine, both hydrophobic and charged. The incorrect prediction of stability of the mutant with Asp at residue 340 is attributed to the fact that within the meanfield approach, we use the wild-type backbone configuration for all mutants, but low melting temperatures suggest a softening of the α-helices at the dimer–dimer interface. Overall, this initial application of meanfield theory toward a protein-solvent system is encouraging for the application of the theoretical model to more complex systems.
Resumo:
Polyclonal antibodies were produced and purified that selectively react with a p53 epitope containing the murine phosphoserine-389 or the human phosphoserine-392 residue, but not the unphosphorylated epitope. These antibodies, termed alpha-392, were employed to demonstrate that the phosphorylation of this serine-389 residue in the p53 protein occurs in vivo in response to ultraviolet radiation of cells containing the p53 protein. After ultraviolet radiation of cells in culture, p53 levels increase and concomitantly serine-389 is phosphorylated in these cells. By contrast, the serine-389 phosphorylation of the p53 protein was not detected by these antibodies in the increased levels of p53 protein made in response to γ radiation or the treatment of cells with etoposide. These results demonstrate an ultraviolet responsive and specific phosphorylation site at serine-389 of the mouse or serine-392 of the human p53 protein. Previous studies have demonstrated that this phosphorylation of p53 activates the protein for specific DNA binding. This study demonstrates in vivo a unique phosphorylation site in the p53 protein that responds to a specific type of DNA damage.
Resumo:
Activation of the tumor suppressor p53 by stress and damage stimuli often correlates with induction of stress kinases, Jun-NH2 kinase (JNK). As JNK association with p53 plays an important role in p53 stability, in the present study we have elucidated the relationship between the JNK-signaling pathway and p53 stability and activity. Expression of a constitutively active form of JNKK upstream kinase, mitogen-activated protein kinase kinase kinase (ΔMEKK1), increased the level of the exogenously transfected form of p53 in p53 null (10.1) cells as well as of endogenous p53 in MCF7 breast cancer cells. Increased p53 level by forced expression of ΔMEKK1 coincided with a decrease in p53 ubiquitination in vivo and with prolonged p53 half-life. Computerized modeling of the JNK-binding site (amino acids 97–116; p7 region) enabled us to design mutations of exposed residues within this region. Respective mutations (p53101-5-8) and deletion (p53Δp7) forms of p53 did not exhibit the same increase in p53 levels upon ΔMEKK1 expression. In vitro phosphorylation of p53 by JNK abolished Mdm2 binding and targeting of p53 ubiquitination. Similarly, ΔMEKK1 expression increased p53 phosphorylation by immunopurified JNK and dissociated p53–Mdm2 complexes. Transcriptional activity of p53, as measured via mdm2 promoter-driven luciferase, exhibited a substantial increase in ΔMEKK1-expressing cells. Cotransfection of p53 and ΔMEKK1 into p53 null cells potentiated p53-dependent apoptosis, suggesting that MEKK1 effectors contribute to the ability of p53 to mediate programmed cell death. Our results point to the role of MEKK1-JNK signaling in p53 stability, transcriptional activities, and apoptotic capacity as part of the cellular response to stress.
Resumo:
The rat 3Y1 derivative cell lines, EId10 and EId23, established by introducing the adenovirus E1A12S, Id-1H, and Id-2H cDNAs linked to the hormone-inducible promoter, express these proteins upon treatment with dexamethasone and elicit apoptosis, although these cell lines express mutated p53. The E1A mutants containing a deletion in either the N terminus or the conserved region 1 were unable to induce apoptosis in cooperation with Ids. Western blot analysis of the immunoprecipitates prepared from the dexamethasone-treated EId10 cell extract showed that Id-2H preferentially binds to E1A and E2A (E12/E47) helix–loop–helix transcription factors in vivo, but scarcely to the retinoblastoma protein. After induction of E1A and Ids, EId10 and EId23 cells began to accumulate in S phase and undergo apoptosis before entering G2 phase, suggesting that abnormal synthesis of DNA induced by coexpression of E1A, Id-1H, and Id-2H results in the induction of apoptosis. Apoptosis also is induced in mouse A40 (p53−/−) cells by E1A alone or E1A plus Ids after transient transfection of the expression vectors. The induction of apoptosis is stimulated by coexpression with wild-type p53; however, apoptosis induced by E1A alone was suppressed completely by coexpression with mutated p53, whereas apoptosis induced by E1A plus Ids was stimulated by the mutated p53 as done by wild-type p53. These results suggest that the suppressive function of mutated p53 is overcome by Ids.
Resumo:
The murine γ-herpesvirus 68 replicates in epithelial sites after intranasal challenge, then persists in various cell types, including B lymphocytes. Mice that lack CD4+ T cells (I-Ab−/−) control the acute infection, but suffer an ultimately lethal recrudescence of lytic viral replication in the respiratory tract. The consequences of CD4+ T cell deficiency for the generation and maintenance of murine γ-herpesvirus 68-specific CD8+ set now have been analyzed by direct staining with viral peptides bound to major histocompatibility complex class I tetramers and by a spectrum of functional assays. Both acutely and during viral reactivation, the CD8+ T cell responses in the I-Ab−/− group were no less substantial than in the I-Ab+/+ controls. Indeed, virus-specific CD8+ T cell numbers were increased in the lymphoid tissue of clinically compromised I-Ab−/− mice, although relatively few of the potential cytotoxic T lymphocyte effectors were recruited back to the site of pathology in the lung. Thus the viral reactivation that occurs in the absence of CD4+ T cells was not associated with any exhaustion of the virus-specific cytotoxic T lymphocyte response. It seems that CD8+ T cells alone are insufficient to maintain long-term control of this persistent γ-herpesvirus.
Resumo:
The Mdm2 proto-oncogene is amplified to high copy numbers in human sarcomas and is overexpressed in a wide variety of other human cancers. Because Mdm2 protein forms a complex with the p53 tumor suppressor protein and down-regulates p53 function, the oncogenic potential of Mdm2 is presumed to be p53-dependent. To model these conditions in mice, we have used the entire Mdm2 gene, under transcriptional control of its native promoter region, as a transgene to create mice that overexpress Mdm2. The transgenic mice are predisposed to spontaneous tumor formation, and the incidence of sarcomas observed in the Mdm2-transgenic mice in the presence or absence of functional p53 demonstrates that, in addition to Mdm2-mediated inactivation of p53, there exists a p53-independent role for Mdm2 in tumorigenesis.
Resumo:
Recently, several proteins have been identified that are related in their sequence to the p53 tumor-suppressor protein. One of these proteins, which is termed p73, exhibits sequence homology to the p53 transcriptional activation, DNA binding, and oligomerization domains. The adenovirus E1B 55-kDa protein, the adenovirus E4orf6 protein, and SV40 T antigen each can bind to p53 and inhibit p53 function. Here we demonstrate that the adenovirus E4orf6 protein, but not the E1B 55-kDa protein or T antigen, interacts with p73. The E4orf6 protein inhibits p73-mediated transcriptional activation and cell killing in a manner similar to its effect on p53. Thus, only a subset of viral oncoproteins that antagonize p53 function also interacts with the related p73 protein.