53 resultados para light-dark cycle
Resumo:
A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition.
Resumo:
The role of carotenoids in quenching of chlorophyll fluorescence in the major light-harvesting complex of photosystem II has been studied with a view to understanding the molecular basis of the control of photoprotective nonradiative energy dissipation by the xanthophyll cycle in vivo. The control of chlorophyll fluorescence quenching in the isolated complex has been investigated in terms of the number of the conjugated double bonds for a series of carotenoids ranging from n = 5-19, giving an estimated first excited singlet state energy from 20,700 cm-1 to 10,120 cm-1. At pH 7.8 the addition of exogenous carotenoids with >=10 conjugated double bonds (including zeaxanthin) stimulated fluorescence quenching relative to the control with no added carotenoid, whereas those with n = 9 conjugated double bonds (e.g., violaxanthin) had no effect on fluorescence. When quenching in the light-harvesting complex of photosystem II was induced by a lowering of pH to 5.5, carotenoids with n = 9 conjugated double bonds (including violaxanthin) caused a noticeable inhibition of fluorescence quenching relative to the control. Of the 10 carotenoids tested, quenching induced by the addition of the tertiary amine compound, dibucaine, to isolated light-harvesting complex of photosystem II could only be reversed by violaxanthin. These results are discussed in terms of the two theories developed to explain the role of zeaxanthin and violaxanthin in nonphotochemical quenching of chlorophyll fluorescence.
Resumo:
Leaves of the C4 plant maize have two major types of photosynthetic cells: a ring of five large bundle sheath cells (BSC) surrounds each vascular bundle and smaller mesophyll cells (MC) lie between the cylinders of bundle sheath cells. The enzyme ribulose bisphosphate carboxylase/oxygenase is encoded by nuclear rbcS and chloroplast rbcL genes. It is not present in MC but is abundant in adjacent BSC of green leaves. As reported previously, the separate regions of rbcS-m3, which are required for stimulating transcription of the gene in BSC and for suppressing expression of reporter genes in MC, were identified by an in situ expression assay; expression was not suppressed in MC until after leaves of dark-grown seedlings had been illuminated for 24 h. Now we have found that transient expression of rbcS-m3 reporter genes is stimulated in BSC via a red/far-red reversible phytochrome photoperception and signal transduction system but that blue light is required for suppressing rbcS-m3 reporter gene expression in MC. Blue light is also required for the suppression system to develop in MC. Thus, the maize gene rbcS-m3 contains certain sequences that are responsive to a phytochrome photoperception and signal transduction system and other regions that respond to a UVA/blue light photoperception and signal transduction system. Various models of "coaction" of plant photoreceptors have been advanced; these observations show the basis for one type of coaction.
Resumo:
The Arabidopsis HY4 gene, required for blue-light-induced inhibition of hypocotyl elongation, encodes a 75-kDa flavoprotein (CRY1) with characteristics of a blue-light photoreceptor. To investigate the mechanism by which this photoreceptor mediates blue-light responses in vivo, we have expressed the Arabidopsis HY4 gene in transgenic tobacco. The transgenic plants exhibited a short-hypocotyl phenotype under blue, UV-A, and green light, whereas they showed no difference from the wild-type plant under red/far-red light or in the dark. This phenotype was found to cosegregate with overexpression of the HY4 transgene and to be fluence dependent. We concluded that the short-hypocotyl phenotype of transgenic tobacco plants was due to hypersensitivity to blue, UV-A, and green light, resulting from over-expression of the photoreceptor. These observations are consistent with the broad action spectrum for responses mediated by this cryptochrome in Arabidopsis and indicate that the machinery for signal, transduction required by the CRY1 protein is conserved among different plant species. Furthermore, the level of these photoresponses is seen to be determined by the cellular concentration of this photoreceptor.
Resumo:
YPT/rab proteins are ras-like small GTP-binding proteins that serve as key regulators of vesicular transport. The mRNA levels of two YPT/rab genes in pea plants are repressed by light, with the process mediated by phytochrome. Here, we examined the mRNA expression and the location of the two proteins, pra2- and pra3-encoded proteins, using monoclonal antibodies. The pra2 and pra3 mRNA levels were highest in the stems of dark-grown seedlings. The corresponding proteins were found in the cytosol and the membranes of the stems. Most of the pra2 protein was in the growing internodes, especially in the growing region, but the pra3 protein was widespread. These results suggest that the pra2 protein is important for vesicular transport in stems, possibly contributing to stem growth in the dark, and that the pra3 protein is important for general vesicular transport. The amounts of pra2 and pra3 proteins decreased with illumination. The decrease in these proteins may be related to the phytochrome-dependent inhibition of stem growth that occurs in etiolated pea seedlings.
Resumo:
We have developed a system for the isolation of Neurospora crassa mutants that shows altered responses to blue light. To this end we have used the light-regulated promoter of the albino-3 gene fused to the neutral amino acid permease gene mtr. The product of the mtr gene is required for the uptake of neutral aliphatic and aromatic amino acids, as well as toxic analogs such as p-flurophenylalanine or 4-methyltryptophan. mtr trp-2-carrying cells were transformed with the al-3 promoter-mtr wild-type gene (al-3p-mtr+) to obtain a strain with a light-regulated tryptophan uptake. This strain is sensitive to p-fluorophenylalanine when grown under illumination and resistant when grown in the dark. UV mutagenesis of the al-3p-mtr(+)-carrying strain allowed us to isolate two mutant strains, BLR-1 and BLR-2 (blue light regulator), that are light-resistant to p-fluorophenylalanine and have lost the ability to grow on tryptophan. These two strains have a pale-orange phenotype and show down-regulation of all the photoregulated genes tested (al-3, al-1, con-8, and con-10). Mutations in the BLR strains are not allelic with white collar 1 or white collar 2, regulatory genes that are also involved in the response to blue light.
Resumo:
Flowering plants require light for chlorophyll synthesis. Early studies indicated that the dependence on light for greening stemmed in part from the light-dependent reduction of the chlorophyll intermediate protochlorophyllide to the product chlorophyllide. Light-dependent reduction of protochlorophyllide by flowering plants is contrasted by the ability of nonflowering plants, algae, and photosynthetic bacteria to reduce protochlorophyllide and, hence, synthesize (bacterio) chlorophyll in the dark. In this report, we functionally complemented a light-independent protochlorophyllide reductase mutant of the eubacterium Rhodobacter capsulatus with an expression library composed of genomic DNA from the cyanobacterium Synechocystis sp. PCC 6803. The complemented R. capsulatus strain is capable of synthesizing bacteriochlorophyll in the light, thereby indicating that a chlorophyll biosynthesis enzyme can function in the bacteriochlorophyll biosynthetic pathway. However, under dark growth conditions the complemented R. capsulatus strain fails to synthesize bacteriochlorophyll and instead accumulates protochlorophyllide. Sequence analysis demonstrates that the complementing Synechocystis genomic DNA fragment exhibits a high degree of sequence identity (53-56%) with light-dependent protochlorophyllide reductase enzymes found in plants. The observation that a plant-type, light-dependent protochlorophyllide reductase enzyme exists in a cyanobacterium indicates that light-dependent protochlorophyllide reductase evolved before the advent of eukaryotic photosynthesis. As such, this enzyme did not arise to fulfill a function necessitated either by the endosymbiotic evolution of the chloroplast or by multicellularity; rather, it evolved to fulfill a fundamentally cell-autonomous role.
Resumo:
NADPH-protochlorophyllide oxidoreductase (POR; EC 1.6.99.1) catalyzes the only known light-dependent step in chlorophyll synthesis of higher plants, the reduction of protochlorophyllide (Pchlide) to chlorophyllide. In barley, two distinct immunoreactive POR proteins were identified. In contrast to the light-sensitive POR enzyme studied thus far (POR-A), levels of the second POR protein remained constant in seedlings during the transition from dark growth to the light and in green plants. The existence of a second POR-related protein was verified by isolating and sequencing cDNAs that encode a second POR polypeptide (POR-B) with an amino acid sequence identity of 75% to the POR-A. In the presence of NADPH and Pchlide, the in vitro-synthesized POR-A and POR-B proteins could be reconstituted to ternary enzymatically active complexes that reduced Pchlide to chlorophyllide only after illumination. Even though the in vitro activities of the two enzymes were similar, the expression of their genes during the light-induced transformation of etiolated to green seedlings was distinct. While the POR-A mRNA rapidly declined during illumination of dark-grown seedlings and soon disappeared, POR-B mRNA remained at an approximately constant level in dark-grown and green seedlings. Thus these results suggest that chlorophyll synthesis is controlled by two light-dependent POR enzymes, one that is active only transiently in etiolated seedlings at the beginning of illumination and the other that also operates in green plants.