132 resultados para immunoglobulin E B cells
Resumo:
Antigen receptors (BCRs) on developing B lymphocytes play two opposing roles—promoting survival of cells that may later bind a foreign antigen and inhibiting survival of cells that bind too strongly to self-antigens. It is not known how these opposing outcomes are signaled by BCRs on immature B cells. Here we analyze the effect of a null mutation in the Syk tyrosine kinase on maturing B cells displaying a transgene-encoded BCR that binds hen egg lysozyme (HEL). In the absence of HEL antigen, HEL-specific BCRs are expressed normally on the surface of Syk-deficient immature B-lineage cells, but this fails to promote maturation beyond the earliest stages of B-lineage commitment. Binding of HEL antigen, nevertheless, triggers phosphorylation of CD79α/β BCR subunits and modulation of receptors from the surface in Syk-deficient cells, but it cannot induce an intracellular calcium response. Continuous binding of low- or high-avidity forms of HEL, expressed as self-antigens, fails to restore the signal needed for maturation. Compared with the effects in the same system of null mutations in other BCR signaling elements, such as CD45 and Lyn kinase, these results indicate that Syk is essential for transmitting a signal that initiates the program of B-lymphocyte maturation.
Resumo:
The assembly of a pre-B cell receptor (pre-BCR) composed of an Ig μ heavy chain (μH-chain), the surrogate light (SL) chain, and the Igα/β dimer is critical for late pro-B cells to advance to the pre-B cell stage. By using a transgenic mouse model, in which μH-chain synthesis is solely driven by a tetracycline-controlled transactivator, we show that de novo synthesis of μH-chain in transgenic pro-B cells not only induces differentiation but also proliferation. This positive effect of μH-chain synthesis on proliferation requires the presence of SL chain and costimulatory signals provided by stromal cells or IL-7. We conclude that pre-BCR signaling induces clonal expansion of early pre-B cells.
Resumo:
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of unknown cause that afflicts the central nervous system. MS is typified by a highly clonally restricted antigen-driven antibody response that is confined largely to the central nervous system. The major antigenic targets of this response and the role of antibody in disease pathogenesis remain unclear. To help resolve these issues, we cloned the IgG repertoire directly from active plaque and periplaque regions in MS brain and from B cells recovered from the cerebrospinal fluid of a patient with MS with subacute disease. We found that high-affinity anti-DNA antibodies are a major component of the intrathecal IgG response in the patients with MS that we studied. Furthermore, we show DNA-specific monoclonal antibodies rescued from two subjects with MS as well as a DNA-specific antibody rescued from an individual suffering from systemic lupus erythematosus bound efficiently to the surface of neuronal cells and oligodendrocytes. For two of these antibodies, cell-surface recognition was DNA dependent. Our findings indicate that anti-DNA antibodies may promote important neuropathologic mechanisms in chronic inflammatory disorders, such as MS and systemic lupus erythematosus.
Resumo:
Ever since monoclonal antibodies were produced in 1975 with mouse myeloma cells there has been interest in developing human myeloma cultures for the production of monoclonal antibodies. However, despite multiple attempts, no human myeloma line suitable for hybridoma production has been described. Here we report the derivation of a hypoxanthine–aminopterin–thymidine-sensitive and ouabain-resistant human myeloma cell line (Karpas 707H) that contains unique genetic markers. We show that this line is useful for the generation of stable human hybridomas. It can easily be fused with ouabain-sensitive Epstein–Barr virus-transformed cells as well as with fresh tonsil and blood lymphocytes, giving rise to stable hybrids that continuously secrete very large quantities of human immunoglobulins. The derived hybrids do not lose immunoglobulin secretion over many months of continuous growth. The availability of this cell line should enable the in vitro immortalization of human antibody-producing B cells that are formed in vivo. The monoclonal antibodies produced may have advantages in immunotherapy.
Resumo:
Somatic mosaicism has been observed previously in the lymphocyte population of patients with Fanconi anemia (FA). To identify the cellular origin of the genotypic reversion, we examined each lymphohematopoietic and stromal cell lineage in an FA patient with a 2815–2816ins19 mutation in FANCA and known lymphocyte somatic mosaicism. DNA extracted from individually plucked peripheral blood T cell colonies and marrow colony-forming unit granulocyte–macrophage and burst-forming unit erythroid cells revealed absence of the maternal FANCA exon 29 mutation in 74.0%, 80.3%, and 86.2% of colonies, respectively. These data, together with the absence of the FANCA exon 29 mutation in Epstein–Barr virus-transformed B cells and its presence in fibroblasts, indicate that genotypic reversion, most likely because of back mutation, originated in a lymphohematopoietic stem cell and not solely in a lymphocyte population. Contrary to a predicted increase in marrow cellularity resulting from reversion in a hematopoietic stem cell, pancytopenia was progressive. Additional evaluations revealed a partial deletion of 11q in 3 of 20 bone marrow metaphase cells. By using interphase fluorescence in situ hybridization with an MLL gene probe mapped to band 11q23 to identify colony-forming unit granulocyte–macrophage and burst-forming unit erythroid cells with the 11q deletion, the abnormal clone was exclusive to colonies with the FANCA exon 29 mutation. Thus, we demonstrate the spontaneous genotypic reversion in a lymphohematopoietic stem cell. The subsequent development of a clonal cytogenetic abnormality in nonrevertant cells suggests that ex vivo correction of hematopoietic stem cells by gene transfer may not be sufficient for providing life-long stable hematopoiesis in patients with FA.
Resumo:
Herein we describe the molecular characterization of the human leukocyte activation antigen CD100 and identify it as the first semaphorin, to our knowledge, in the immune system. Semaphorins have recently been described as neuronal chemorepellants that direct pioneering neurons during nervous system development. In this study we demonstrate that CD100 induces B cells to aggregate and improves their viability in vitro. We show that CD100 modifies CD40-CD40L B-cell signaling by augmenting B-cell aggregation and survival and down-regulating CD23 expression. Thus, these results suggest that semaphorins as exemplified by CD100 also play a functional role in the immune system.
Resumo:
Mutations of the Bruton's tyrosine kinase (btk) gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immune deficiency (Xid) in mice. To establish the BTK role in B-cell activation we examined the responses of wild-type and Xid B cells to stimulation through surface IgM and CD40, the transducers of thymus independent-type 2 and thymus-dependent activation, respectively. Wild-type BTK was necessary for proliferation induced by soluble anti-IgM (a prototype for thymus independent-type 2 antigen), but not for responses to soluble CD40 ligand (CD40L, the B-cell activating ligand expressed on T-helper cells). In the absence of wild-type BTK, B cells underwent apoptotic death after stimulation with anti-IgM. In the presence of wild-type but not mutated BTK, anti-IgM stimulation reduced apoptotic cell death. In contrast, CD40L increased viability of both wild-type and Xid B cells. Importantly, viability after stimulation correlated with the induced expression of bcl-XL. In fresh ex vivo small resting B cells from wild-type mice there was only barely detectable bcl-XL protein, but there was more in the larger, low-density ("activated") splenic B cells and peritoneal B cells. In vitro Bcl-XL induction following ligation of sIgM-required BTK, was cyclosporin A (CsA)-sensitive and dependent on extracellular Ca2+. CD40-mediated induction of bcl-x required neither wild-type BTK nor extracellular Ca2+ and was insensitive to CsA. These results indicate that BTK lies upstream of bcl-XL in the sIgM but not the CD40 activation pathway. bcl-XL is the first induced protein to be placed downstream of BTK.
Resumo:
Cytotoxic T lymphocytes (CTL) can induce apoptosis through a granzyme B-based killing mechanism. Here we show that in cells undergoing apoptosis by granzyme B, both p45 pro-interleukin 1 beta converting enzyme (ICE) and pro-CPP32 are processed. Using ICE deficient (ICE -/-) mice, embryonic fibroblasts exhibit high levels of resistance to apoptosis by granzyme B or granzyme 3, while B lymphoblasts are granzyme B-resistant, thus identifying an ICE-dependent apoptotic pathway that is activated by CTL granzymes. In contrast, an alternative ICE-independent pathway must also be activated as ICE -/- thymocytes remain susceptible to apoptosis by both granzymes. In ICE -/- B cells or HeLa cells transfected with mutant inactive ICE or Ich-1S that exhibit resistance to granzyme B, CPP32 is processed to p17 and poly(ADP-ribose) polymerase is cleaved indicating that this protease although activated was not associated with an apoptotic nuclear phenotype. Using the peptide inhibitor Ac-DEVD-CHO, apoptosis as well as p45 ICE hydrolysis are suppressed in HeLa cells, suggesting that a CPP32-like protease is upstream of ICE. In contrast, p34cdc2 kinase, which is required for granzyme B-induced apoptosis, remains inactive in ICE -/- B cells indicating it is downstream of ICE. We conclude that granzyme B activates an ICE-dependent cell death pathway in some cell types and requires a CPP32-like Ac-DEVD-CHO inhibitable protease acting upstream to initiate apoptosis.
Resumo:
The interleukin 7 receptor (IL-7R) plays a crucial role in early B- and T-cell development. It consists of a unique a chain and a common gamma chain [IL-2 receptor gamma chain (IL-2Rgamma)]. Gene inactivation of IL-7, IL-7R, and IL-2Rgamma resulted in severe impairment of B and T lymphopoiesis in mice. In addition, IL-2Rgamma-deficient mice lack gammadelta T cells in the skin and have the impaired development of natural killer (NK) cells and intraepithelial lymphocytes. To explore the role of IL-7/IL-7R system in gammadelta T- and NK-cell development, we have generated and analyzed IL-7R-deficient mice. gammadelta T cells were absent from skin, gut, liver, and spleen in the deficient mice. In contrast, alphabeta T and B cells were detected in reduced, but certain, numbers, and NK cells developed normally. The gammadelta T-cell development in fetal and adult thymus was also completely blocked. These results clearly demonstrate that the signal from IL-7R is indispensable for gammadelta T-cell development in both thymic and extrathymic pathways. On the contrary, it is suggested that NK-cell development requires cytokine(s) other than IL-7.
Resumo:
Superantigens, such as toxic shock syndrome toxin 1 (TSST-1), have been implicated in the pathogenesis of several autoimmune and allergic diseases associated with polyclonal B cell activation. In this report, we studied the in vitro effects of TSST-1 on B cell activation. We show herein that TSST-1 produced antagonistic effects on Ig synthesis by peripheral blood mononuclear cells (PBMC) from normal subjects, depending on the concentration used; Ig production was inhibited at 1000 pg/ml (P < 0.01) and enhanced at 1 and 0.01 pg/ml (P < 0.01) of toxin. Cultures of PBMC were then examined for morphologic features and DNA fragmentation characteristic for apoptosis. B cells exhibited a significantly higher (P < 0.01) incidence of apoptosis after stimulation with 1000 pg/ml of TSST-1 compared with 1 or 0.01 pg/ml of toxin or medium alone. Abundant expression of Fas, a cell surface protein that mediates apoptosis, was detected on B cells after stimulation with 1000 pg/ml of TSST-1 and was significantly higher on B cells undergoing apoptosis than on live cells (P = 0.01). Additionally, increased Fas expression and B cell death occurred at concentrations of TSST-1 inducing the production of high amounts of gamma interferon (IFN-gamma), and both events could be blocked by neutralizing anti-IFN-gamma antibody. These findings suggest that high concentrations of TSST-1 can induce IFN-gamma-dependent B cell apoptosis, whereas at low concentrations it stimulates Ig synthesis by PBMC from normal subjects. These findings support the concept that staphylococcal toxins have a role in B cell hyperactivity in autoimmunity and allergy.
Resumo:
The importance of receptor binding in the potent immunogenicity of Escherichia coli heat-labile enterotoxin B subunit (EtxB) was tested by comparing its immunogical properties with those of a receptor binding mutant, EtxB(G33D). Subcutaneous immunization of EtxB(G33D) resulted in 160-fold reduction in antibody titer compared with wild-type EtxB, whereas its oral delivery failed to provoke any detectable secretory or serum anti-B subunit responses. Moreover, the two proteins induced strikingly different effects on lymphocyte cultures in vitro. EtxB, in comparison with EtxB(G33D), caused an increase in the proportion of B cells, many of which were activated (CD25+); the complete depletion of CD8+ T cells; an increase in the activation of CD4+ T cells; and an increase in interleukin 2 and a decrease in interferon gamma. These data indicate that EtxB exerts profound effects on immune cells, suggesting that its potent immunogenicity is dependent not only on efficient receptor-mediated uptake, but also on direct receptor-mediated immunomodulation of lymphocyte subsets.
Resumo:
In establishing the memory B-cell population and maintaining self-tolerance during an immune response, apoptosis mediates the removal of early, low-affinity antibody-forming cells, unselected germinal center (GC) cells, and, potentially, self-reactive B cells. To address the role of the apoptosis-signaling cell surface molecule FAS in the B-cell response to antigen, we have examined the T-cell-dependent B-cell response to the carrier-conjugated hapten (4-hydroxy-3-nitrophenyl)acetyl (NP) in lpr mice in which the fas gene is mutated. High levels of FAS were expressed on normal GC B cells but the absence of FAS did not perturb the progressive decline in numbers of either GC B cells or extrafollicular antibody-forming cells. Furthermore, the rate of formation and eventual size of the NP-specific memory B-cell population in lpr mice were normal. The accumulation of cells with affinity-enhancing mutations and the appearance of high-affinity anti-NP IgG1 antibody in the serum were also normal in lpr mice. Thus, although high levels of FAS are expressed on GC B cells, FAS is not required for GC selection or for regulation of the major antigen-specific B-cell compartments. The results suggest that the size and composition of B-cell compartments in the humoral immune response are regulated by mechanisms that do not require FAS.
Resumo:
CD40 is a 45-kDa glycoprotein member of the tumor necrosis factor receptor (TNFR) family expressed on B cells, thymic epithelial cells, dendritic cells, and some carcinoma cells. The unique capacity of CD40 to trigger immunoglobulin isotype switching is dependent on the activation of protein-tyrosine kinases, yet CD40 possesses no kinase domain and no known consensus sequences for binding to protein-tyrosine kinases. Recently, an intracellular protein (CD40bp/LAP-1/CRAF-1) which belongs to the family of TNFR-associated proteins was reported to associate with CD40. We describe a 23-kDa cell surface protein (p23) which is specifically associated with CD40 on B cells and on urinary bladder transitional carcinoma cells. Protein microsequencing revealed that p23 shows no homology to any known protein. A rabbit antibody raised against a peptide derived from p23 recognized a 23-kDa protein in CD40 immunoprecipitates. In contrast to CD40bp/LAP-1/CRAF-1, p23 was not associated with TNFR p80 (CD120b). These findings suggest that p23 is a novel member of the CD40 receptor complex.
Resumo:
T cells, B cells, and antibody are found in the white matter of the central nervous system in multiple sclerosis. The epitope center for the antibody response to human myelin basic protein (MBP) fits precisely the minimal epitope Pro85-Val-Val-His-Phe-Phe-Lys-Asn-Ile-Val-Thr-Pro96 for that reported for HLA DR2b (DRB1*1501)-restricted T cells that recognize MBP [Wucherpfenning, K.W., Sette, A., Southwood, S., Oseroff, C., Matsui, M., Strominger, J. & Hafler, D. (1994) J. Exp. Med. 179, 279-290], and overlaps with the reported DR2a-restricted epitope for T cells reactive to MBP [Martin, R., Howell, M. D., Jaraquemada, D., Furlage, M., Richert, J., Brostoff, S., Long, E. O., McFarlin, D. E. & McFarland, H. F. (1991) J. Exp. Med. 173, 19-24]. We describe a molecular model of this epitope.
Resumo:
The immunosuppressive drugs cyclosporin A and FK506 interfere with the inducible transcription of cytokine genes in T cells and in other immune cells, in part by preventing the activation of NF-AT (nuclear factor of activated T cells). We show that transcription factor NFAT1 in T cells is rapidly dephosphorylated on stimulation, that dephosphorylation occurs before translocation of NFAT1 into the cell nucleus, and that dephosphorylation increases the affinity of NFAT1 for its specific sites in DNA. Cyclosporin A prevents the dephosphorylation and the nuclear translocation of NFAT1 in T cells, B cells, macrophages, and mast cells, delineating at least one mechanism that contributes to the profound immunosuppressive effects of this compound.