102 resultados para human-brain
Resumo:
Two chemokine (chemoattractant cytokines) beta peptides, macrophage inflammatory proteins 1 alpha and 1 beta (MIP-1 alpha and MIP-1 beta), were induced in human monocyte cultures following infection with the human immunodeficiency virus type 1 (HIV-1). Induction depended on productive viral infection: not only did the kinetics of MIP-1 peptide induction closely follow those of viral replication, but monocyte cultures inoculated with heat-inactivated virus or infected in the presence of AZT failed to produce these chemokine beta peptides. In addition, HIV infection markedly altered the pattern of beta chemokine expression elicited by tumor necrosis factor (TNF), itself a potent proinflammatory cytokine upregulated during the development of AIDS. Reverse transcription (RT)-PCR and RT-in situ PCR studies on brain tissue from patients with AIDS dementia demonstrated elevated MIP-1 alpha and MIP-1 beta mRNA expression relative to comparable samples from HIV-1-infected patients without dementia. Cells expressing chemokines in HIV-1-infected brains were identified morphologically as microglia and astrocytes. As MIP-1 alpha and MIP-1 beta are potent chemoattractants for both monocytes and specific subpopulations of lymphocytes, this dysregulation of beta chemokine expression may influence the trafficking of leukocytes during HIV infection. These data, taken together, suggest a mechanism by which HIV-1-infected monocytes might recruit uninfected T cells and monocytes to sites of active viral replication or inflammation, notably the brain and lymph nodes.
Resumo:
Transgenic mice carrying heterologous genes directed by a 670-bp segment of the regulatory sequence from the human transferrin (TF) gene demonstrated high expression in brain. Mice carrying the chimeric 0.67kbTF-CAT gene expressed TF-CAT in neurons and glial cells of the nucleus basalis, the cerebrum, corpus callosum, cerebellum, and hippocampus. In brains from two independent TF-CAT transgenic founder lines, copy number of TF-CAT mRNA exceeded the number of mRNA transcripts encoding either mouse endogenous transferrin or mouse endogenous amyloid precursor protein. In two transgenic founder lines, the chloramphenicol acetyltransferase (CAT) protein synthesized from the TF-CAT mRNA was estimated to be 0.10-0.15% of the total soluble proteins of the brain. High expression observed in brain indicates that the 0.67kbTF promoter is a promising director of brain expression of heterologous genes. Therefore, the promoter has been used to express the three common human apolipoprotein E (apoE) alleles in transgenic mouse brains. The apoE alleles have been implicated in the expression of Alzheimer disease, and the human apoE isoforms are reported to interact with different affinities to the brain beta-amyloid and tau protein in vitro. Results of this study demonstrate high expression and production of human apoE proteins in transgenic mouse brains. The model may be used to characterize the interaction of human apoE isoforms with other brain proteins and provide information helpful in designing therapeutic strategies for Alzheimer disease.
Resumo:
The Huntington disease (HD) phenotype is associated with expansion of a trinucleotide repeat in the IT15 gene, which is predicted to encode a 348-kDa protein named huntington. We used polyclonal and monoclonal anti-fusion protein antibodies to identify native huntingtin in rat, monkey, and human. Western blots revealed a protein with the expected molecular weight which is present in the soluble fraction of rat and monkey brain tissues and lymphoblastoid cells from control cases. In lymphoblastoid cell lines from juvenile-onset heterozygote HD cases, both normal and mutant huntingtin are expressed, and increasing repeat expansion leads to lower levels of the mutant protein. Immunocytochemistry indicates that huntingtin is located in neurons throughout the brain, with the highest levels evident in larger neurons. In the human striatum, huntingtin is enriched in a patch-like distribution, potentially corresponding to the first areas affected in HD. Subcellular localization of huntingtin is consistent with a cytosolic protein primarily found in somatodendritic regions. Huntingtin appears to particularly associate with microtubules, although some is also associated with synaptic vesicles. On the basis of the localization of huntingtin in association with microtubules, we speculate that the mutation impairs the cytoskeletal anchoring or transport of mitochondria, vesicles, or other organelles or molecules.
Resumo:
A G protein-coupled receptor for the pineal hormone melatonin was recently cloned from mammals and designated the Mel1a melatonin receptor. We now report the cloning of a second G protein-coupled melatonin receptor from humans and designate it the Mel1b melatonin receptor. The Mel1b receptor cDNA encodes a protein of 362 amino acids that is 60% identical at the amino acid level to the human Mel1a receptor. Transient expression of the Mel1b receptor in COS-1 cells results in high-affinity 2-[125I]iodomelatonin binding (Kd = 160 +/- 30 pM). In addition, the rank order of inhibition of specific 2-[125I]iodomelatonin binding by eight ligands is similar to that exhibited by the Mel1a melatonin receptor. Functional studies of NIH 3T3 cells stably expressing the Mel1b melatonin receptor indicate that it is coupled to inhibition of adenylyl cyclase. Comparative reverse transcription PCR shows that the Mel1b melatonin receptor is expressed in retina and, to a lesser extent, brain. PCR analysis of human-rodent somatic cell hybrids maps the Mel1b receptor gene (MTNR1B) to human chromosome 11q21-22. The Mel1b melatonin receptor may mediate the reported actions of melatonin in retina and participate in some of the neurobiological effects of melatonin in mammals.
Resumo:
Polysialic acid is a developmentally regulated posttranslational modification of the neural cell adhesion molecule (N-CAM). It has been suggested that this large anionic carbohydrate modulates the adhesive property of N-CAM, but the precise function of polysialic acid is not known. Here we describe the isolation and functional expression of a cDNA encoding a human polysialyltransferase. For this expression cloning, COS-1 cells were cotransfected with a human fetal brain cDNA library and a cDNA encoding human N-CAM. Transfected COS-1 cells were stained with a monoclonal antibody specific for polysialic acid and enriched by fluorescence-activated cell sorting. Sibling selection of recovered plasmids resulted in a cDNA clone that directs the expression of polysialic acid on the cell surface. The deduced amino acid sequence indicates that the polysialyltransferase shares a common sequence motif with other sialyltransferases cloned so far. The polysialyltransferase is, however, distinct by having two clusters of basic amino acids. The amount of the polysialyltransferase transcripts correlates well with the formation of polysialic acid in various human tissues, and is abundant in the fetal brain but not in the adult brain. Moreover, HeLa cells stably expressing polysialic acid and N-CAM promoted neurite outgrowth and sprouting. These results indicate that the cloned polysialyltransferase forms polysialylated, embryonic N-CAM, which is critical for plasticity of neural cells.
Resumo:
To achieve a better understanding of how D5 dopamine receptors mediate the actions of dopamine in brain, we have developed antibodies specific for the D5 receptor. D5 antibodies reacted with recombinant baculovirus-infected Sf9 cells expressing the D5 receptor but not with the D1 receptor or a variety of other catecholaminergic and muscarinic receptors. Epitope-tagged D5 receptors expressed in mammalian cells were reactive with both D5 antibodies and an epitope-specific probe. A mixture of N-linked glycosylated polypeptides and higher molecular-mass species was detected on immunoblots of membrane fractions of D5-transfected cells and also of primate brain. D5 receptor antibodies intensely labeled pyramidal neurons in the prefrontal cortex, whereas spiny medium-sized neurons and aspiny large interneurons of the caudate nucleus were relatively lightly labeled. Antibodies to the D5 dopamine receptor should prove important in experimentally determining specific roles for the D5 and D1 receptors in cortical processes and diseases.
Resumo:
We measured coherence between the electroencephalogram at different scalp sites while human subjects performed delayed response tasks. The tasks required the retention of either verbalizable strings of characters or abstract line drawings. In both types of tasks, a significant enhancement in coherence in the θ range (4–7 Hz) was found between prefrontal and posterior electrodes during 4-s retention intervals. During 6-s perception intervals, far fewer increases in θ coherence were found. Also in other frequency bands, coherence increased; however, the patterns of enhancement made a relevance for working memory processes seem unlikely. Our results suggest that working memory involves synchronization between prefrontal and posterior association cortex by phase-locked, low frequency (4–7 Hz) brain activity.
Resumo:
Averaged event-related potential (ERP) data recorded from the human scalp reveal electroencephalographic (EEG) activity that is reliably time-locked and phase-locked to experimental events. We report here the application of a method based on information theory that decomposes one or more ERPs recorded at multiple scalp sensors into a sum of components with fixed scalp distributions and sparsely activated, maximally independent time courses. Independent component analysis (ICA) decomposes ERP data into a number of components equal to the number of sensors. The derived components have distinct but not necessarily orthogonal scalp projections. Unlike dipole-fitting methods, the algorithm does not model the locations of their generators in the head. Unlike methods that remove second-order correlations, such as principal component analysis (PCA), ICA also minimizes higher-order dependencies. Applied to detected—and undetected—target ERPs from an auditory vigilance experiment, the algorithm derived ten components that decomposed each of the major response peaks into one or more ICA components with relatively simple scalp distributions. Three of these components were active only when the subject detected the targets, three other components only when the target went undetected, and one in both cases. Three additional components accounted for the steady-state brain response to a 39-Hz background click train. Major features of the decomposition proved robust across sessions and changes in sensor number and placement. This method of ERP analysis can be used to compare responses from multiple stimuli, task conditions, and subject states.
Resumo:
An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is ≈50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 μM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3.5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 μM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel.
Resumo:
A human and a mouse gene have been isolated based on homology to a recombinational repair gene from the corn smut Ustilago maydis. The new human (h) gene, termed hREC2, bears striking resemblance to several others, including hRAD51 and hLIM15. hREC2 is located on human chromosome 14 at q23–24. The overall amino acid sequence reveals characteristic elements of a RECA-like gene yet harbors an src-like phosphorylation site curiously absent from hRAD51 and hLIM15. Unlike these two relatives, hREC2 is expressed in a wide range of tissues including lung, liver, placenta, pancreas, leukocytes, colon, small intestine, brain, and heart, as well as thymus, prostate, spleen, and uterus. Of greatest interest is that hREC2 is undetectable by reverse transcription-coupled PCR in tissue culture unless the cells are treated by ionizing radiation.
Resumo:
Galactosialidosis (GS) is a human neurodegenerative disease caused by a deficiency of lysosomal protective protein/cathepsin A (PPCA). The GS mouse model resembles the severe human condition, resulting in nephropathy, ataxia, and premature death. To rescue the disease phenotype, GS mice were transplanted with bone marrow from transgenic mice overexpressing human PPCA specifically in monocytes/macrophages under the control of the colony stimulating factor-1 receptor promoter. Transgenic macrophages infiltrated and resided in all organs and expressed PPCA at high levels. Correction occurred in hematopoietic tissues and nonhematopoietic organs, including the central nervous system. PPCA-expressing perivascular and leptomeningeal macrophages were detected throughout the brain of recipient mice, although some neuronal cells, such as Purkinje cells, continued to show storage and died. GS mice crossed into the transgenic background reflected the outcome of bone marrow-transplanted mice, but the course of neuronal degeneration was delayed in this model. These studies present definite evidence that macrophages alone can provide a source of corrective enzyme for visceral organs and may be beneficial for neuronal correction if expression levels are sufficient.
Resumo:
Brain-derived neurotrophic factor (BDNF) has trophic effects on serotonergic (5-HT) neurons in the central nervous system. However, the role of endogenous BDNF in the development and function of these neurons has not been established in vivo because of the early postnatal lethality of BDNF null mice. In the present study, we use heterozygous BDNF+/− mice that have a normal life span and show that these animals develop enhanced intermale aggressiveness and hyperphagia accompanied by significant weight gain in early adulthood; these behavioral abnormalities are known to correlate with 5-HT dysfunction. Forebrain 5-HT levels and fiber density in BDNF+/− mice are normal at an early age but undergo premature age-associated decrements. However, young adult BDNF+/− mice show a blunted c-fos induction by the specific serotonin releaser-uptake inhibitor dexfenfluramine and alterations in the expression of several 5-HT receptors in the cortex, hippocampus, and hypothalamus. The heightened aggressiveness can be ameliorated by the selective serotonin reuptake inhibitor fluoxetine. Our results indicate that endogenous BDNF is critical for the normal development and function of central 5-HT neurons and for the elaboration of behaviors that depend on these nerve cells. Therefore, BDNF+/− mice may provide a useful model to study human psychiatric disorders attributed to dysfunction of serotonergic neurons.
Resumo:
The structure and biosynthesis of poly-N-acetyllactosamine display a dramatic change during development and oncogenesis. Poly-N-acetyllactosamines are also modified by various carbohydrate residues, forming functional oligosaccharides such as sialyl Lex. Herein we describe the isolation and functional expression of a cDNA encoding β-1,3-N-acetylglucosaminyltransferase (iGnT), an enzyme that is essential for the formation of poly-N-acetyllactosamine. For this expression cloning, Burkitt lymphoma Namalwa KJM-1 cells were transfected with cDNA libraries derived from human melanoma and colon carcinoma cells. Transfected Namalwa cells overexpressing the i antigen were continuously selected by fluorescence-activated cell sorting because introduced plasmids containing Epstein–Barr virus replication origin can be continuously amplified as episomes. Sibling selection of plasmids recovered after the third consecutive sorting resulted in a cDNA clone that directs the increased expression of i antigen on the cell surface. The deduced amino acid sequence indicates that this protein has a type II membrane protein topology found in almost all mammalian glycosyltransferases cloned to date. iGnT, however, differs in having the longest transmembrane domain among glycosyltransferases cloned so far. The iGnT transcript is highly expressed in fetal brain and kidney and adult brain but expressed ubiquitously in various adult tissues. The expression of the presumed catalytic domain as a fusion protein with the IgG binding domain of protein A enabled us to demonstrate that the cDNA encodes iGnT, the enzyme responsible for the formation of GlcNAcβ1 → 3Galβ1 → 4GlcNAc → R structure and poly-N-acetyllactosamine extension.
Resumo:
The cytoskeleton plays an important role in neuronal morphogenesis. We have identified and characterized a novel actin-binding protein, termed Mayven, predominantly expressed in brain. Mayven contains a BTB (broad complex, tramtrack, bric-a-brac)/POZ (poxvirus, zinc finger) domain-like structure in the predicted N terminus and “kelch repeats” in the predicted C-terminal domain. Mayven shares 63% identity (77% similarity) with the Drosophila ring canal (“kelch”) protein. Somatic cell-hybrid analysis indicated that the human Mayven gene is located on chromosome 4q21.2, whereas the murine homolog gene is located on chromosome 8. The BTB/POZ domain of Mayven can self-dimerize in vitro, which might be important for its interaction with other BTB/POZ-containing proteins. Confocal microscopic studies of endogenous Mayven protein revealed a highly dynamic localization pattern of the protein. In U373-MG astrocytoma/glioblastoma cells, Mayven colocalized with actin filaments in stress fibers and in patchy cortical actin-rich regions of the cell margins. In primary rat hippocampal neurons, Mayven is highly expressed in the cell body and in neurite processes. Binding assays and far Western blotting analysis demonstrated association of Mayven with actin. This association is mediated through the “kelch repeats” within the C terminus of Mayven. Depolarization of primary hippocampal neurons with KCl enhanced the association of Mayven with actin. This increased association resulted in dynamic changes in Mayven distribution from uniform to punctate localization along neuronal processes. These results suggest that Mayven functions as an actin-binding protein that may be translocated along axonal processes and might be involved in the dynamic organization of the actin cytoskeleton in brain cells.
Resumo:
Induction of the fibroblast growth factor-2 (FGF-2) gene and the consequent accumulation of FGF-2 in the nucleus are operative events in mitotic activation and hypertrophy of human astrocytes. In the brain, these events are associated with cellular degeneration and may reflect release of the FGF-2 gene from cell contact inhibition. We used cultures of human astrocytes to examine whether expression of FGF-2 is also controlled by soluble growth factors. Treatment of subconfluent astrocytes with interleukin-1β, epidermal or platelet-derived growth factors, 18-kDa FGF-2, or serum or direct stimulation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate or adenylate cyclase with forskolin increased the levels of 18-, 22-, and 24-kDa FGF-2 isoforms and FGF-2 mRNA. Transfection of FGF-2 promoter–luciferase constructs identified a unique −555/−513 bp growth factor-responsive element (GFRE) that confers high basal promoter activity and activation by growth factors to a downstream promoter region. It also identified a separate region (−624/−556 bp) essential for PKC and cAMP stimulation. DNA–protein binding assays indicated that novel cis-acting elements and trans-acting factors mediate activation of the FGF-2 gene. Southwestern analysis identified 40-, 50-, 60-, and 100-kDa GFRE-binding proteins and 165-, 112-, and 90-kDa proteins that interacted with the PKC/cAMP-responsive region. The GFRE and the element essential for PKC and cAMP stimulation overlap with the region that mediates cell contact inhibition of the FGF-2 promoter. The results show a two-stage regulation of the FGF-2 gene: 1) an initial induction by reduced cell contact, and 2) further activation by growth factors or the PKC-signaling pathway. The hierarchic regulation of the FGF-2 gene promoter by cell density and growth factors or PKC reflects a two-stage activation of protein binding to the GFRE and to the PKC/cAMP-responsive region, respectively.