293 resultados para gene function


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Drosophila gene bicoid functions as the anterior body pattern organizer of Drosophila. Embryos lacking maternally expressed bicoid fail to develop anterior segments including head and thorax. In wild-type eggs, bicoid mRNA is localized in the anterior pole region and the bicoid protein forms an anterior-to-posterior concentration gradient. bicoid activity is required for transcriptional activation of zygotic segmentation genes and the translational suppression of uniformly distributed maternal caudal mRNA in the anterior region of the embryo. caudal genes as well as other homeobox genes or members of the Drosophila segmentation gene cascade have been found to be conserved in animal evolution. In contrast, bicoid homologs have been identified only in close relatives of the schizophoran fly Drosophila. This poses the question of how the bicoid gene evolved and adopted its unique function in organizing anterior–posterior polarity. We have cloned bicoid from a basal cyclorrhaphan fly, Megaselia abdita (Phoridae, Aschiza), and show that the gene originated from a recent duplication of the direct homolog of the vertebrate gene Hox3, termed zerknüllt, which specifies extraembryonic tissues in insects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The function(s) of the genes (PKD1 and PKD2) responsible for the majority of cases of autosomal dominant polycystic kidney disease is unknown. While PKD1 encodes a large integral membrane protein containing several structural motifs found in known proteins involved in cell–cell or cell–matrix interactions, PKD2 has homology to PKD1 and the major subunit of the voltage-activated Ca2+ channels. We now describe sequence homology between PKD2 and various members of the mammalian transient receptor potential channel (TRPC) proteins, thought to be activated by G protein-coupled receptor activation and/or depletion of internal Ca2+ stores. We show that PKD2 can directly associate with TRPC1 but not TRPC3 in transfected cells and in vitro. This association is mediated by two distinct domains in PKD2. One domain involves a minimal region of 73 amino acids in the C-terminal cytoplasmic tail of PKD2 shown previously to constitute an interacting domain with PKD1. However, distinct residues within this region mediate specific interactions with TRPC1 or PKD1. The C-terminal domain is sufficient but not necessary for the PKD2–TRPC1 association. A more N-terminal domain located within transmembrane segments S2 and S5, including a putative pore helical region between S5 and S6, is also responsible for the association. Given the ability of the TRPC to form functional homo- and heteromultimeric complexes, these data provide evidence that PKD2 may be functionally related to TRPC proteins and suggest a possible role of PKD2 in modulating Ca2+ entry in response to G protein-coupled receptor activation and/or store depletion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Higher plant reproduction is unique because two cells are fertilized in the haploid female gametophyte. Egg and sperm nuclei fuse to form the embryo. A second sperm nucleus fuses with the central cell nucleus that replicates to generate the endosperm, a tissue that supports embryo development. To understand mechanisms that initiate reproduction, we isolated a mutation in Arabidopsis, f644, that allows for replication of the central cell and subsequent endosperm development without fertilization. When mutant f644 egg and central cells are fertilized by wild-type sperm, embryo development is inhibited, and endosperm is overproduced. By using a map-based strategy, we cloned and sequenced the F644 gene and showed that it encodes a SET-domain polycomb protein. Subsequently, we found that F644 is identical to MEDEA (MEA), a gene whose maternal-derived allele is required for embryogenesis [Grossniklaus, U., Vielle-Calzada, J.-P., Hoeppner, M. A. & Gagliano, W. B. (1998) Science 280, 446–450]. Together, these results reveal functions for plant polycomb proteins in the suppression of central cell proliferation and endosperm development. We discuss models to explain how polycomb proteins function to suppress endosperm and promote embryo development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We identified a set of cytokinin-insensitive mutants by using a screen based on the ethylene-mediated triple response observed after treatment with low levels of cytokinins. One group of these mutants disrupts ACS5, a member of the Arabidopsis gene family that encodes 1-aminocyclopropane-1-carboxylate synthase, the first enzyme in ethylene biosynthesis. The ACS5 isoform is mainly responsible for the sustained rise in ethylene biosynthesis observed in response to low levels of cytokinin and appears to be regulated primarily by a posttranscriptional mechanism. Furthermore, the dominant ethylene-overproducing mutant eto2 was found to be the result of an alteration of the carboxy terminus of ACS5, suggesting that this domain acts as a negative regulator of ACS5 function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To get a better understanding of mutagenic mechanisms in humans, we have cloned and sequenced the human homolog of the Saccharomyces cerevisiae REV3 gene. The yeast gene encodes the catalytic subunit of DNA polymerase ζ, a nonessential enzyme that is thought to carry out translesion replication and is responsible for virtually all DNA damage-induced mutagenesis and the majority of spontaneous mutagenesis. The human gene encodes an expected protein of 3,130 residues, about twice the size of the yeast protein (1,504 aa). The two proteins are 29% identical in an amino-terminal region of ≈340 residues, 39% identical in a carboxyl-terminal region of ≈850 residues, and 29% identical in a 55-residue region in the middle of the two genes. The sequence of the expected protein strongly predicts that it is the catalytic subunit of a DNA polymerase of the pol ζ type; the carboxyl-terminal domain possesses, in the right order, the six motifs characteristic of eukaryotic DNA polymerases, most closely resembles yeast pol ζ among all polymerases in the GenBank database, and is different from the human α, δ, and ɛ enzymes. Human cells expressing high levels of an hsREV3 antisense RNA fragment grow normally, but show little or no UV-induced mutagenesis and are slightly more sensitive to killing by UV. The human gene therefore appears to carry out a function similar to that of its yeast counterpart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T helper (Th) cells can be categorized according to their cytokine expression. The differential induction of Th cells expressing Th1 and/or Th2 cytokines is key to the regulation of both protective and pathological immune responses. Cytokines are expressed transiently and there is a lack of stably expressed surface molecules, significant for functionally different types of Th cells. Such molecules are of utmost importance for the analysis and selective functional modulation of Th subsets and will provide new therapeutic strategies for the treatment of allergic or autoimmune diseases. To this end, we have identified potential target genes preferentially expressed in Th2 cells, expressing interleukin (IL)-4, IL-5, and/or IL-10, but not interferon-γ. One such gene, T1/ST2, is expressed stably on both Th2 clones and Th2-polarized cells activated in vivo or in vitro. T1/ST2 expression is independent of induction by IL-4, IL-5, or IL-10. T1/ST2 plays a critical role in Th2 effector function. Administration of either a mAb against T1/ST2 or recombinant T1/ST2 fusion protein attenuates eosinophilic inflammation of the airways and suppresses IL-4 and IL-5 production in vivo following adoptive transfer of Th2 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heart failure is accompanied by severely impaired β-adrenergic receptor (βAR) function, which includes loss of βAR density and functional uncoupling of remaining receptors. An important mechanism for the rapid desensitization of βAR function is agonist-stimulated receptor phosphorylation by the βAR kinase (βARK1), an enzyme known to be elevated in failing human heart tissue. To investigate whether alterations in βAR function contribute to the development of myocardial failure, transgenic mice with cardiac-restricted overexpression of either a peptide inhibitor of βARK1 or the β2AR were mated into a genetic model of murine heart failure (MLP−/−). In vivo cardiac function was assessed by echocardiography and cardiac catheterization. Both MLP−/− and MLP−/−/β2AR mice had enlarged left ventricular (LV) chambers with significantly reduced fractional shortening and mean velocity of circumferential fiber shortening. In contrast, MLP−/−/βARKct mice had normal LV chamber size and function. Basal LV contractility in the MLP−/−/βARKct mice, as measured by LV dP/dtmax, was increased significantly compared with the MLP−/− mice but less than controls. Importantly, heightened βAR desensitization in the MLP−/− mice, measured in vivo (responsiveness to isoproterenol) and in vitro (isoproterenol-stimulated membrane adenylyl cyclase activity), was completely reversed with overexpression of the βARK1 inhibitor. We report here the striking finding that overexpression of this inhibitor prevents the development of cardiomyopathy in this murine model of heart failure. These findings implicate abnormal βAR-G protein coupling in the pathogenesis of the failing heart and point the way toward development of agents to inhibit βARK1 as a novel mode of therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human androgen receptor (AR) is a ligand-activated transcription factor that regulates genes important for male sexual differentiation and development. To better understand the role of the receptor as a transcription factor we have studied the mechanism of action of the N-terminal transactivation function. In a protein–protein interaction assay the AR N terminus (amino acids 142–485) selectively bound to the basal transcription factors TFIIF and the TATA-box-binding protein (TBP). Reconstitution of the transactivation activity in vitro revealed that AR142–485 fused to the LexA protein DNA-binding domain was competent to activate a reporter gene in the presence of a competing DNA template lacking LexA binding sites. Furthermore, consistent with direct interaction with basal transcription factors, addition of recombinant TFIIF relieved squelching of basal transcription by AR142–485. Taken together these results suggest that one mechanism of transcriptional activation by the AR involves binding to TFIIF and recruitment of the transcriptional machinery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wnt and its intracellular effector β-catenin regulate developmental and oncogenic processes. Using expression cloning to identify novel components of the Wnt pathway, we isolated casein kinase Iɛ (CKIɛ). CKIɛ mimicked Wnt in inducing a secondary axis in Xenopus, stabilizing β-catenin, and stimulating gene transcription in cells. Inhibition of endogenous CKIɛ by kinase-defective CKIɛ or CKIɛ antisense-oligonucleotides attenuated Wnt signaling. CKIɛ was in a complex with axin and other downstream components of the Wnt pathway, including Dishevelled. CKIɛ appears to be a positive regulator of the pathway and a link between upstream signals and the complexes that regulate β-catenin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The egr-type zinc-finger transcription factor encoded by the Drosophila gene stripe (sr) is expressed in a subset of epidermal cells to which muscles attach during late stages of embryogenesis. We report loss-of-function and gain-of-function experiments indicating that sr activity provides ectodermal cells with properties required for the establishment of a normal muscle pattern during embryogenesis and for the differentiation of tendon-like epidermal muscle attachment sites (EMA). Our results show that sr encodes a transcriptional activator which acts as an autoregulated developmental switch gene. sr activity controls the expression of EMA-specific target genes in cells of ectodermal but not of mesodermal origin. sr-expressing ectodermal cells generate long-range signals that interfere with the spatial orientation of the elongating myotubes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The xeroderma pigmentosum group D (XPD) protein has a dual function, both in nucleotide excision repair of DNA damage and in basal transcription. Mutations in the XPD gene can result in three distinct clinical phenotypes, XP, trichothiodystrophy (TTD), and XP with Cockayne syndrome. To determine if the clinical phenotypes of XP and TTD can be attributed to the sites of the mutations, we have identified the mutations in a large group of TTD and XP-D patients. Most sites of mutations differed between XP and TTD, but there are three sites at which the same mutation is found in XP and TTD patients. Since the corresponding patients were all compound heterozygotes with different mutations in the two alleles, the alleles were tested separately in a yeast complementation assay. The mutations which are found in both XP and TTD patients behaved as null alleles, suggesting that the disease phenotype was determined by the other allele. If we eliminate the null mutations, the remaining mutagenic pattern is consistent with the site of the mutation determining the phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Chinese hamster ovary (CHO) mutant UV40 cell line is hypersensitive to UV and ionizing radiation, simple alkylating agents, and DNA cross-linking agents. The mutant cells also have a high level of spontaneous chromosomal aberrations and 3-fold elevated sister chromatid exchange. We cloned and sequenced a human cDNA, designated XRCC9, that partially corrected the hypersensitivity of UV40 to mitomycin C, cisplatin, ethyl methanesulfonate, UV, and γ-radiation. The spontaneous chromosomal aberrations in XRCC9 cDNA transformants were almost fully corrected whereas sister chromatid exchanges were unchanged. The XRCC9 genomic sequence was cloned and mapped to chromosome 9p13. The translated XRCC9 sequence of 622 amino acids has no similarity with known proteins. The 2.5-kb XRCC9 mRNA seen in the parental cells was undetectable in UV40 cells. The mRNA levels in testis were up to 10-fold higher compared with other human tissues and up to 100-fold higher compared with other baboon tissues. XRCC9 is a candidate tumor suppressor gene that might operate in a postreplication repair or a cell cycle checkpoint function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systematic screen termed the allelic message display (AMD) was developed for the hunting of imprinted genes. In AMD, differential display PCR is adopted to image allelic expression status of multiple polymorphic transcripts in two parental mouse strains, reciprocal F1 hybrids and pooled backcross progenies. From the displayed patterns, paternally and maternally expressed transcripts can be unequivocally identified. The effectiveness of AMD screening was clearly demonstrated by the identification of a paternally expressed gene Impact on mouse chromosome 18, the predicted product of which belongs to the YCR59c/yigZ hypothetical protein family composed of yeast and bacterial proteins with currently unknown function. In contrast with previous screening methods necessitating positional cloning efforts or generation of parthenogenetic embryos, this approach requires nothing particular but appropriately crossed mice and can be readily applied to any tissues at various developmental stages. Hence, AMD would considerably accelerate the identification of imprinted genes playing pivotal roles in mammalian development and the pathogenesis of various diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proximal spinal muscular atrophy is an autosomal recessive human disease of spinal motor neurons leading to muscular weakness with onset predominantly in infancy and childhood. With an estimated heterozygote frequency of 1/40 it is the most common monogenic disorder lethal to infants; milder forms represent the second most common pediatric neuromuscular disorder. Two candidate genes—survival motor neuron (SMN) and neuronal apoptosis inhibitory protein have been identified on chromosome 5q13 by positional cloning. However, the functional impact of these genes and the mechanism leading to a degeneration of motor neurons remain to be defined. To analyze the role of the SMN gene product in vivo we generated SMN-deficient mice. In contrast to the human genome, which contains two copies, the mouse genome contains only one SMN gene. Mice with homozygous SMN disruption display massive cell death during early embryonic development, indicating that the SMN gene product is necessary for cellular survival and function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used the interaction between the erythroid-specific enhancer in hypersensitivity site 2 of the human β-globin locus control region and the globin gene promoters as a paradigm to examine the mechanisms governing promoter/enhancer interactions in this locus. We have demonstrated that enhancer-dependent activation of the globin promoters is dependent on the presence of both a TATA box in the proximal promoter and the binding site for the erythroid-specific heteromeric transcription factor NF-E2 in the enhancer. Mutational analysis of the transcriptionally active component of NF-E2, p45NF-E2, localizes the critical region for this function to a proline-rich transcriptional activation domain in the NH2-terminal 80 amino acids of the protein. In contrast to the wild-type protein, expression of p45 NF-E2 lacking this activation domain in an NF-E2 null cell line fails to support enhancer-dependent transcription in transient assays. More significantly, the mutated protein also fails to reactivate expression of the endogenous β- or α-globin loci in this cell line. Protein-protein interaction studies reveal that this domain of p45 NF-E2 binds specifically to a component of the transcription initiation complex, TATA binding protein associated factor TAFII130. These findings suggest one potential mechanism for direct recruitment of distal regulatory regions of the globin loci to the individual promoters.