48 resultados para dosage forms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

MyoD is a member of a family of DNA-binding transcription factors that contain a helix-loop-helix (HLH) region involved in protein-protein interactions. In addition to self-association and DNA binding, MyoD associates with a number of other HLH-containing proteins, thereby modulating the strength and specificity of its DNA binding. Here, we examine the interactions of full-length MyoD with itself and with an HLH-containing peptide portion of an E2A gene product, E47-96. Analytical ultracentrifugation reveals that MyoD forms micelles that contain more than 100 monomers and are asymmetric and stable up to 36 degrees C. The critical micelle concentration increases slightly with temperature, but micelle size is unaffected. The micelles are in reversible equilibrium with monomer. Addition of E47-96 results in the stoichiometric formation of stable MyoD-E47-96 heterodimers and the depletion of micelles. Micelle formation effectively holds the concentration of free MyoD constant and equal to the critical micelle concentration. In the presence of micelles, the extent of all interactions involving free MyoD is independent of the total MyoD concentration and independent of one another. For DNA binding, the apparent relative specificity for different sites can be affected. In general, heterodimer-associated activities will depend on the self-association behavior of the partner protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth factor-binding protein 2 (Grb2) is an adaptor protein that links tyrosine kinases to Ras. BCR-ABL is a tyrosine kinase oncoprotein that is implicated in the pathogenesis of Philadelphia chromosome (Ph1)-positive leukemias. Grb2 forms a complex with BCR-ABL and the nucleotide exchange factor Sos that leads to the activation of the Ras protooncogene. In this report we demonstrate that Grb2 mutant proteins lacking amino- or carboxyl-terminal src homology SH3 domains suppress BCR-ABL-induced Ras activation and reverse the oncogenic phenotype. The Grb2 SH3-deletion mutant proteins bind to BCR-ABL and do not impair tyrosine kinase activity. Expression of the Grb2 SH3-deletion mutant proteins in BCR-ABL-transformed Rat-1 fibroblasts and in the human Ph1-positive leukemic cell line K562 inhibits their ability to grow as foci in soft agar and form tumors in nude mice. Furthermore, expression of the Grb2 SH3-deletion mutants in K562 cells induced their differentiation. Because Ras plays an important role in signaling by receptor and nonreceptor tyrosine kinases, the use of interfering mutant Grb2 proteins may be applied to block the proliferation of other cancers that depend in part on activated tyrosine kinases for growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diphtheria tox repressor (DtxR) of Corynebacterium diphtheriae plays a critical role in the regulation of diphtheria toxin expression and the control of other iron-sensitive genes. The crystal structures of apo-DtxR and of the metal ion-activated form of the repressor have been solved and used to identify motifs involved in DNA and metal ion binding. Residues involved in binding of the activated repressor to the diphtheria tox operator, glutamine 43, arginine 47, and arginine 50, were located and confirmed by site-directed mutagenesis. Previous biochemical and genetic data can be explained in terms of these structures. Conformational differences between apo- and Ni-DtxR are discussed with regard to the mechanism of action of this repressor.