114 resultados para cysteine-protease
Resumo:
The process of human erythrocyte invasion by Plasmodium falciparum parasites involves a calcium-dependent serine protease with properties consistent with a subtilisin-like activity. This enzyme achieves the last crucial maturation step of merozoite surface protein 1 (MSP1) necessary for parasite entry into the host erythrocyte. In eukaryotic cells, such processing steps are performed by subtilisin-like maturases, known as proprotein convertases. In an attempt to characterize the MSP1 maturase, we have identified a gene that encodes a P. falciparum subtilisin-like protease (PfSUB2) whose deduced active site sequence resembles more bacterial subtilisins. Therefore, we propose that PfSUB2 belongs to a subclass of eukaryotic subtilisins different from proprotein convertases. Pfsub2 is expressed during merozoite differentiation and encodes an integral membrane protein localized in the merozoite dense granules, a secretory organelle whose contents are believed to participate in a late step of the erythrocyte invasion. PfSUB2’s subcellular localization, together with its predicted enzymatic properties, leads us to propose that PfSUB2 could be responsible for the late MSP1 maturation step and thus is an attractive target for the development of new antimalarial drugs.
Resumo:
A family of RNA m5C methyl transferases (MTases) containing over 55 members in eight subfamilies has been identified recently by an iterative search of the genomic sequence databases by using the known 16S rRNA m5C 967 MTase, Fmu, as an initial probe. The RNA m5C MTase family contained sequence motifs that were highly homologous to motifs in the DNA m5C MTases, including the ProCys sequence that contains the essential Cys catalyst of the functionally similar DNA-modifying enzymes; it was reasonable to assign the Cys nucleophile to be that in the conserved ProCys. The family also contained an additional conserved Cys residue that aligns with the nucleophilic catalyst in m5U54 tRNA MTase. Surprisingly, the mutant of the putative Cys catalyst in the ProCys sequence was active and formed a covalent complex with 5-fluorocytosine-containing RNA, whereas the mutant at the other conserved Cys was inactive and unable to form the complex. Thus, notwithstanding the highly homologous sequences and similar functions, the RNA m5C MTase uses a different Cys as a catalytic nucleophile than the DNA m5C MTases. The catalytic Cys seems to be determined, not by the target base that is modified, but by whether the substrate is DNA or RNA. The function of the conserved ProCys sequence in the RNA m5C MTases remains unknown.
Resumo:
Atrial natriuretic peptide (ANP) is a cardiac hormone essential for the regulation of blood pressure. In cardiac myocytes, ANP is synthesized as a precursor, pro-ANP, that is converted to biologically active ANP by an unknown membrane-associated protease. Recently, we cloned a transmembrane serine protease, corin, that is highly expressed in the heart. In this study, we examine effects of corin on pro-ANP processing. Our results show that recombinant human corin converts pro-ANP to ANP and that the cleavage in pro-ANP by corin is highly sequence specific. Our findings suggest that corin is the long-sought pro-ANP-converting enzyme and that the corin-mediated pro-ANP activation may play a role in regulating blood pressure.
Resumo:
13C-selective NMR, combined with inhibitor perturbation experiments, shows that the Cɛ1—H proton of the catalytic histidine in resting α-lytic protease and subtilisin BPN′ resonates, when protonated, at 9.22 ppm and 9.18 ppm, respectively, which is outside the normal range for such protons and ≈0.6 to 0.8 ppm further downfield than previously reported. They also show that the previous α-lytic protease assignments [Markley, J. L., Neves, D. E., Westler, W. M., Ibanez, I. B., Porubcan, M. A. & Baillargeon, M. W. (1980) Front. Protein Chem. 10, 31–61] were to signals from inactive or denatured protein. Simulations of linewidth vs. pH demonstrate that the true signal is more difficult to detect than corresponding signals from inactive derivatives, owing to higher imidazole pKa values and larger chemical shift differences between protonated and neutral forms. A compilation and analysis of available NMR data indicates that the true Cɛ1—H signals from other serine proteases are similarly displaced downfield, with past assignments to more upfield signals probably in error. The downfield displacement of these proton resonances is shown to be consistent with an H-bond involving the histidine Cɛ1—H as donor, confirming the original hypothesis of Derewenda et al. [Derewenda, Z. S., Derewenda, U. & Kobos, P. M. (1994) J. Mol. Biol. 241, 83–93], which was based on an analysis of literature x-ray crystal structures of serine hydrolases. The invariability of this H-bond among enzymes containing Asp-His-Ser triads indicates functional importance. Here, we propose that it enables a reaction-driven imidazole ring flip mechanism, overcoming a major dilemma inherent in all previous mechanisms, namely how these enzymes catalyze both the formation and productive breakdown of tetrahedral intermediates.
Resumo:
Coelomocytes, the heterogeneous population of sea urchin putative immune cells, were found to express a complex set of transcripts featuring scavenger receptor cysteine-rich (SRCR) repeats. SRCR domains define a metazoan superfamily of proteins, many of which are implicated in development and regulation of the immune system of vertebrates. Coelomocytes transcribe multiple SRCR genes from among a multigene family encoding an estimated number of 1,200 SRCR domains in specific patterns particular to each individual. Transcription levels for given SRCR genes may range from pronounced to undetectable, yet all tested animals harbor the genomic loci encoding these genes. Analysis of several SRCR genes revealed multiple loci corresponding to each type. In the case of one SRCR type, a cluster of at least three genes was detected within a 133-kb bacterial artificial chromosome insert, and conserved as well as unique regions were identified in sequences of three genomic clones derived from a single animal. Array hybridizations with repeated samples of coelomocyte messages revealed substantial alterations in levels of expression of many SRCR genes, with fluctuations of up to 10-fold in 1 week and up to 30-fold over a period of 3 months. This report is the first demonstration of genomic and transcriptional complexity in molecules expressed by invertebrate coelomocytes. The mechanisms controlling SRCR gene expression and the functional significance of this dynamic system await elucidation.
Resumo:
To quantify the reactions of nitric oxide (NO) with hemoglobin under physiological conditions and to test models of NO transport on hemoglobin, we have developed an assay to measure NO–hemoglobin reaction products in normal volunteers, under basal conditions and during NO inhalation. NO inhalation markedly raised total nitrosylated hemoglobin levels, with a significant arterial–venous gradient, supporting a role for hemoglobin in the transport and delivery of NO. The predominant species accounting for this arterial–venous gradient is nitrosyl(heme)hemoglobin. NO breathing increases S-nitrosation of hemoglobin β-chain cysteine 93, however only to a fraction of the level of nitrosyl(heme)hemoglobin and without a detectable arterial–venous gradient. A strong correlation between methemoglobin and plasma nitrate formation was observed, suggesting that NO metabolism is a primary physiological cause of hemoglobin oxidation. Our results demonstrate that NO–heme reaction pathways predominate in vivo, NO binding to heme groups is a rapidly reversible process, and S-nitrosohemoglobin formation is probably not a primary transport mechanism for NO but may facilitate NO release from heme.
Resumo:
Site-specific photocleavage of hen egg lysozyme and bovine serum albumin (BSA) by N-(l-phenylalanine)-4-(1-pyrene)butyramide (Py-Phe) is reported. Py-Phe binds to lysozyme and BSA with binding constants 2.2 ± 0.3 × 105 M−1 and 6.5 ± 0.4 × 107 M−1, respectively. Photocleavage of lysozyme and BSA was achieved with high specificity when a mixture of protein, Py-Phe, and an electron acceptor, cobalt(III) hexammine (CoHA), was irradiated at 344 nm. Quantum yields of photocleavage of lysozyme and BSA were 0.26 and 0.0021, respectively. No protein cleavage was observed in the absence of Py-Phe, CoHA, or light. N-terminal sequencing of the protein fragments indicated a single cleavage site of lysozyme between Trp-108 and Val-109, whereas the cleavage of BSA was found to be between Leu-346 and Arg-347. Laser flash photolysis studies of a mixture of protein, Py-Phe, and CoHA showed a strong transient with absorption centered at ≈460 nm, corresponding to pyrene cation radical. Quenching of the singlet excited state of Py-Phe by CoHA followed by the reaction of the resulting pyrenyl cation radical with the protein backbone may be responsible for the protein cleavage. The high specificity of photocleavage may be valuable in targeting specific sites of proteins with small molecules.
Resumo:
The specificity of the yeast proprotein-processing Kex2 protease was examined in vivo by using a sensitive, quantitative assay. A truncated prepro-α-factor gene encoding an α-factor precursor with a single α-factor repeat was constructed with restriction sites for cassette mutagenesis flanking the single Kex2 cleavage site (-SLDKR↓EAEA-). All of the 19 substitutions for the Lys (P2) residue in the cleavage site were made. The wild-type and mutant precursors were expressed in a yeast strain lacking the chromosomal genes encoding Kex2 and prepro-α-factor. Cleavage of the 20 sites by Kex2, expressed at the wild-type level, was assessed by using a quantitative-mating assay with an effective range greater than six orders of magnitude. All substitutions for Lys at P2 decreased mating, from 2-fold for Arg to >106-fold for Trp. Eviction of the Kex2-encoding plasmid indicated that cleavage of mutant sites by other cellular proteases was not a complicating factor. Mating efficiencies of strains expressing the mutant precursors correlated well with the specificity (kcat/KM) of purified Kex2 for comparable model peptide substrates, validating the in vivo approach as a quantitative method. The results support the conclusion that KM, which is heavily influenced by the nature of the P2 residue, is a major determinant of cleavage efficiency in vivo. P2 preference followed the rank order: Lys > Arg > Thr > Pro > Glu > Ile > Ser > Ala > Asn > Val > Cys > AsP > Gln > Gly > His > Met > Leu > Tyr > Phe > Trp.
Resumo:
The ATP-dependent Lon protease of Saccharomyces cerevisiae mitochondria is required for selective proteolysis in the matrix, maintenance of mitochondrial DNA, and respiration-dependent growth. Lon may also possess a chaperone-like function that facilitates protein degradation and protein-complex assembly. To understand the influence of Lon’s ATPase and protease activities on these functions, we examined several Lon mutants for their ability to complement defects of Lon-deleted yeast cells. We also developed a rapid procedure for purifying yeast Lon to homogeneity to study the enzyme’s activities and oligomeric state. A point mutation in either the ATPase or the protease site strongly inhibited the corresponding activity of the pure protein but did not alter the protein’s oligomerization; when expressed at normal low levels neither of these mutant enzymes supported respiration-dependent growth of Lon-deleted cells. When the ATPase- or the protease-containing regions of Lon were expressed as separate truncated proteins, neither could support respiration-dependent growth of Lon-deleted cells; however, coexpression of these two separated regions sustained wild-type growth. These results suggest that yeast Lon contains two catalytic domains that can interact with one another even as separate proteins, and that both are essential for the different functions of Lon.
Resumo:
Transmissible spongiform encephalopathies (TSEs) are lethal, infectious disorders of the mammalian nervous system. A TSE hallmark is the conversion of the cellular protein PrPC to disease-associated PrPSc (named for scrapie, the first known TSE). PrPC is protease-sensitive, monomeric, detergent soluble, and primarily α-helical; PrPSc is protease-resistant, polymerized, detergent insoluble, and rich in β-sheet. The “protein-only” hypothesis posits that PrPSc is the infectious TSE agent that directly converts host-encoded PrPC to fresh PrPSc, harming neurons and creating new agents of infection. To gain insight on the conformational transitions of PrP, we tested the ability of several protein chaperones, which supervise the conformational transitions of proteins in diverse ways, to affect conversion of PrPC to its protease-resistant state. None affected conversion in the absence of pre-existing PrPSc. In its presence, only two, GroEL and Hsp104 (heat shock protein 104), significantly affected conversion. Both promoted it, but the reaction characteristics of conversions with the two chaperones were distinct. In contrast, chemical chaperones inhibited conversion. Our findings provide new mechanistic insights into nature of PrP conversions, and provide a new set of tools for studying the process underlying TSE pathogenesis.
Resumo:
Complexes between the quorum-sensing regulator TraR and its inducing ligand autoinducer (AAI) are soluble in Escherichia coli, whereas apo-TraR is almost completely insoluble. Here we show that the lack of soluble TraR is due in large part to rapid proteolysis, inasmuch as apo-TraR accumulated to high levels in an E. coli strain deficient in Clp and Lon proteases. In pulse labeling experiments, AAI protected TraR against proteolysis only when it was added before the radiolabel. This observation indicates that TraR proteins can productively bind AAI only during their own synthesis on polysomes, whereas fully synthesized apo-TraR proteins are not functional AAI receptors. Purified apo-TraR was rapidly degraded by trypsin to oligopeptides, whereas TraR–AAI complexes were more resistant to trypsin and were cleaved at discrete interdomain linkers, indicating that TraR requires AAI to attain its mature tertiary structure. TraR–AAI complexes eluted from a gel filtration column as dimers and bound DNA as dimers. In contrast, apo-TraR was monomeric, and incubation with AAI under a variety of conditions did not cause dimerization. We conclude that AAI is critical for the folding of nascent TraR protein into its mature tertiary structure and that full-length apo-TraR cannot productively bind AAI and is consequently targeted for rapid proteolysis.
Resumo:
The genome expression of positive-stranded RNA viruses starts with translation rather than transcription. For some viruses, the genome is the only viral mRNA and expression is regulated primarily at the translational level and by limited proteolysis of polyproteins. Other virus groups also generate subgenomic mRNAs later in the reproductive cycle. For nidoviruses, subgenomic mRNA synthesis (transcription) is discontinuous and yields a 5′ and 3′ coterminal nested set of mRNAs. Nidovirus transcription is not essential for genome replication, which relies on the autoprocessing products of two replicase polyproteins that are translated from the genome. We now show that the N-terminal replicase subunit, nonstructural protein 1 (nsp1), of the nidovirus equine arteritis virus is in fact dispensable for replication but crucial for transcription, thereby coupling replicase expression and subgenomic mRNA synthesis in an unprecedented manner. Nsp1 is composed of two papain-like protease domains and a predicted N-terminal zinc finger, which was implicated in transcription by site-directed mutagenesis. The structural integrity of nsp1 is essential, suggesting that the protease domains form a platform for the zinc finger to operate in transcription.
Resumo:
The HIV Reverse Transcriptase and Protease Sequence Database is an on-line relational database that catalogs evolutionary and drug-related sequence variation in the human immunodeficiency virus (HIV) reverse transcriptase (RT) and protease enzymes, the molecular targets of anti-HIV therapy (http://hivdb.stanford.edu). The database contains a compilation of nearly all published HIV RT and protease sequences, including submissions from International Collaboration databases and sequences published in journal articles. Sequences are linked to data about the source of the sequence sample and the antiretroviral drug treatment history of the individual from whom the isolate was obtained. During the past year 3500 sequences have been added and the data model has been expanded to include drug susceptibility data on sequenced isolates. Database content has also been integrated with didactic text and the output of two sequence analysis programs.
Resumo:
Electron microscopy of human skin fibroblasts syringe-loaded with human immunodeficiency virus type 1 protease (HIV-1 PR) revealed several effects on nuclear architecture. The most dramatic is a change from a spherical nuclear morphology to one with multiple lobes or deep invaginations. The nuclear matrix collapses or remains only as a peripheral rudiment, with individual elements thicker than in control cells. Chromatin organization and distribution is also perturbed. Attempts to identify a major nuclear protein whose cleavage by the protease might be responsible for these alterations were unsuccessful. Similar changes were observed in SW 13 T3 M [vimentin+] cells, whereas no changes were observed in SW 13 [vimentin−] cells after microinjection of protease. Treatment of SW 13 [vimentin−] cells, preinjected with vimentin to establish an intermediate filament network, with HIV-1 PR resulted in alterations in chromatin staining and distribution, but not in nuclear shape. These same changes were produced in SW 13 [vimentin−] cells after the injection of a mixture of vimentin peptides, produced by the cleavage of vimentin to completion by HIV-1 PR in vitro. Similar experiments with 16 purified peptides derived from wild-type or mutant vimentin proteins and five synthetic peptides demonstrated that exclusively N-terminal peptides were capable of altering chromatin distribution. Furthermore, two separate regions of the N-terminal head domain are primarily responsible for perturbing nuclear architecture. The ability of HIV-1 to affect nuclear organization via the liberation of vimentin peptides may play an important role in HIV-1-associated cytopathogenesis and carcinogenesis.
Resumo:
The proteasome is a large protease complex consisting of multiple catalytic subunits that function simultaneously to digest protein substrates. This complexity has made deciphering the role each subunit plays in the generation of specific protein fragments difficult. Positional scanning libraries of peptide vinyl sulfones were generated in which the amino acid located directly at the site of hydrolysis (P1 residue) was held constant and sequences distal to that residue (P2, P3, and P4 positions) were varied across all natural amino acids (except cysteine and methionine). Binding information for each of the individual catalytic subunits was obtained for each library under a variety of different conditions. The resulting specificity profiles indicated that substrate positions distal to P1 are critical for directing substrates to active subunits in the complex. Furthermore, specificity profiles of IFN-γ-regulated subunits closely matched those of their noninducible counterparts, suggesting that subunit swapping may modulate substrate processing by a mechanism that does require a change in the primary sequence specificity of individual catalytic subunits in the complex. Finally, specificity profiles were used to design specific inhibitors of a single active site in the complex. These reagents can be used to further establish the role of each subunit in substrate processing by the proteasome.