80 resultados para contrast factor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin resistance is a feature of many common disorders including obesity and type 2 diabetes mellitus. In these disorders, the β-cells compensate for the insulin resistance for long periods of time with an increase in secretory capacity, an increase in β-cell mass, or both. To determine whether the β-cell response might relate to a circulating growth factor, we have transplanted normal islets under the kidney capsule of normoglycemic insulin-resistant mice with two different models of insulin resistance: lean mice that have a double heterozygous deletion of the insulin receptor and insulin receptor substrate-1 (DH) or the obese, hyperglycemic ob/ob mice. In the grafts transplanted into both hosts, there was a marked increase in β-cell mitotic activity and islet mass that was comparable with that observed in the endogenous pancreas. By contrast, islets of the DH mouse transplanted into normal mice showed reduced mitotic index. These data suggest the insulin resistance is associated with a circulating islet cell growth factor that is independent of glucose and obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The promoter from rice tungro bacilliform badnavirus (RTBV) is expressed only in phloem tissues in transgenic rice plants. RF2a, a b-Zip protein from rice, is known to bind to the Box II cis element near the TATA box of the promoter. Here, we report that the full-length RTBV promoter and a truncated fragment E of the promoter, comprising nucleotides −164 to +45, result in phloem-specific expression of β-glucuronidase (GUS) reporter genes in transgenic tobacco plants. When a fusion gene comprising the cauliflower mosaic virus 35S promoter and RF2a cDNA was coexpressed with the GUS reporter genes, GUS activity was increased by 2–20-fold. The increase in GUS activity was positively correlated with the amount of RF2a, and the expression pattern of the RTBV promoter was altered from phloem-specific to constitutive. Constitutive expression of RF2a did not induce morphological changes in the transgenic plants. In contrast, constitutive overexpression of the b-ZIP domain of RF2a had a strong effect on the development of transgenic plants. These studies suggest that expression of the b-Zip domain can interfere with the function of homologues of RF2a that regulate development of tobacco plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously reported the disruption of the murine gene encoding the transcription factor USF2 and its consequences on glucose-dependent gene regulation in the liver. We report here a peculiar phenotype of Usf2−/− mice that progressively develop multivisceral iron overload; plasma iron overcomes transferrin binding capacity, and nontransferrin-bound iron accumulates in various tissues including pancreas and heart. In contrast, the splenic iron content is strikingly lower in knockout animals than in controls. To identify genes that may account for the abnormalities of iron homeostasis in Usf2−/− mice, we used suppressive subtractive hybridization between livers from Usf2−/− and wild-type mice. We isolated a cDNA encoding a peptide, hepcidin (also referred to as LEAP-1, for liver-expressed antimicrobial peptide), that was very recently purified from human blood ultrafiltrate and from urine as a disulfide-bonded peptide exhibiting antimicrobial activity. Accumulation of iron in the liver has been recently reported to up-regulate hepcidin expression, whereas our data clearly show that a complete defect in hepcidin expression is responsible for progressive tissue iron overload. The striking similarity of the alterations in iron metabolism between HFE knockout mice, a murine model of hereditary hemochromatosis, and the Usf2−/− hepcidin-deficient mice suggests that hepcidin may function in the same regulatory pathway as HFE. We propose that hepcidin acts as a signaling molecule that is required in conjunction with HFE to regulate both intestinal iron absorption and iron storage in macrophages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leukemia inhibitory factor (LIF) promotes differentiated cell function in several systems. We recently reported LIF and LIF receptor expression in human fetal pituitary corticotrophs in vivo and demonstrated LIF stimulation of adrenocorticotrophin (ACTH) transcription in vitro, suggesting a role for LIF in corticotroph development. We therefore assessed the action of LIF on proliferating murine corticotroph cells (AtT20). LIF impairs proliferation of AtT20 cells (25% reduction versus control, P < 0.03), while simultaneously enhancing ACTH secretion (2-fold, P < 0.001) and augmenting ACTH responsiveness to corticotrophin-releasing hormone (CRH) action (4-fold, P < 0.001). This attenuation of cell growth is due to a block of cell cycle progression from G1 into S phase, as measured by flow cytometric analysis (24 +/- 0.8 versus 11.57 +/- 1.5, P < 0.001). Using bromodeoxyuridine incorporation assays, loss of cells in S phase was confirmed (25 +/- 0.08 to 9.4 +/- 1.4, P < 0.008). In contrast, CRH induced the G2/M phase (3.6 +/- 0.2 to 15.4 +/- 3, P < 0.001). This effect was blunted by LIF (P < 0.001 versus CRH alone). Cyclin A mRNA levels, which decline in S phase, were stimulated 3.5-fold by LIF and markedly suppressed by CRH. These results indicate a LIF-induced cell cycle block occurring at G1/S in corticotroph cells. Thus, LIF reduces proliferation, enhances ACTH secretion, and potentiates effects of CRH on ACTH secretion while blocking effects of CRH on the cell cycle. Responses of these three markers of differentiated corticotroph function indicate LIF to be a differentiation factor for pituitary corticotroph cells by preferential phenotypic switching from proliferative to synthetic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have reported previously the isolation and genetic characterization of mutations in the gene encoding the largest subunit of yeast RNA polymerase II (RNAPII), which lead to 6-azauracil (6AU)-sensitive growth. It was suggested that these mutations affect the functional interaction between RNAPII and transcription-elongation factor TFIIS because the 6AU-sensitive phenotype of the mutant strains was similar to that of a strain defective in the production of TFIIS and can be suppressed by increasing the dosage of the yeast TFIIS-encoding gene, PPR2, RNAPIIs were purified and characterized from two independent 6AU-sensitive yeast mutants and from wild-type (wt) cells. In vitro, in the absence of TFIIS, the purified wt polymerase and the two mutant polymerases showed similar specific activity in polymerization, readthrough at intrinsic transcriptional arrest sites and nascent RNA cleavage. In contrast to the wt polymerase, both mutant polymerases were not stimulated by the addition of a 3-fold molar excess of TFIIS in assays of promoter-independent transcription, readthrough or cleavage. However, stimulation of the ability of the mutant RNAPIIs to cleave nascent RNA and to read through intrinsic arrest sites was observed at TFIIS:RNAPII molar ratios greater than 600:1. Consistent with these findings, the binding affinity of the mutant polymerases for TFIIS was found to be reduced by more than 50-fold compared with that of the wt enzyme. These studies demonstrate that TFIIS has an important role in the regulation of transcription by yeast RNAPII and identify a possible binding site for TFIIS on RNAPII.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a mRNA differential screening of fibroblasts differing for the expression of c-fos we isolated a c-fos-induced growth factor (FIGF). The deduced protein sequence predicts that the cDNA codes for a new member of the platelet-derived growth factor/vascular endothelial growth factor (PDGF/VEGF) family. Northern blot analysis shows that FIGF expression is strongly reduced in c-fos-deficient cells. Transfection of exogenous c-fos driven by a constitutive promoter restores the FIGF expression in these cells. In contrast, both PDGF and VEGF expression is unaffected by c-fos. FIGF is a secreted dimeric protein able to stimulate mitogenic activity in fibroblasts. FIGF overexpression induces morphological alterations in fibroblasts. The cells acquire a spindle-shaped morphology, become more refractive, disorganized, and detach from the plate. These results imply that FIGF is a downstream growth and morphogenic effector of c-fos. These results also suggest that the expression of FIGF in response to c-fos activation induces specific differentiation patterns and its aberrant activation contributes to the malignant phenotype of tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signals emanating from CD40 play crucial roles in B-cell function. To identify molecules that transduce CD40 signalings, we have used the yeast two-hybrid system to done cDNAs encoding proteins that bind the cytoplasmic tail of CD40. A cDNA encoding a putative signal transducer protein, designated TRAF5, has been molecularly cloned. TRAF5 has a tumor necrosis factor receptor-associated factor (TRAF) domain in its carboxyl terminus and is most homologous to TRAF3, also known as CRAF1, CD40bp, or LAP-1, a previously identified CD40-associated factor. The amino terminus has a RING finger domain, a cluster of zinc fingers and a coiled-coil domain, which are also present in other members of the TRAF family protein except for TRAF1. In vitro binding assays revealed that TRAF5 associates with the cytoplasmic tail of CD40, but not with the cytoplasmic tail of tumor receptor factor receptor type 2, which associates with TRAF2. Based on analysis of the association between TRAF5 and various CD40 mutants, residues 230-269 of CD40 are required for the association with TRAF5. In contrast to TRAF3, overexpression of TRAF5 activates transcription factor nuclear factor kappa B. Furthermore, amino-terminally truncated forms of TRAF5 suppress the CD40-mediated induction of CD23 expression, as is the case with TRAF3. These results suggest that TRAF5 and TRAF3 could be involved in both common and distinct signaling pathways emanating from CD40.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ultrastructural pathology of myelinated axons in mice infected experimentally with the Fujisaki strain of Creutzfeldt-Jakob disease (CJD) virus is characterized by myelin sheath vacuolation that closely resembles that induced in murine spinal cord organotypic cultures by tumor necrosis factor alpha (TNF-alpha), a cytokine produced by astrocytes and macrophages. To clarify the role of TNF-alpha in experimental CJD, we investigated the expression of TNF-alpha in brain tissues from CJD virus-infected mice at weekly intervals after inoculation by reverse transcription-coupled PCR, Northern and Western blot analyses, and immunocytochemical staining. Neuropathological findings by electron microscopy, as well as expression of interleukin 1 alpha and glial fibrillary acidic protein, were concurrently monitored. As determined by reverse transcription-coupled PCR, the expression of TNF-alpha, interleukin 1 alpha, and glial fibrillary acidic protein was increased by approximately 200-fold in the brains of CJD virus-inoculated mice during the course of disease. By contrast, beta-actin expression remained unchanged. Progressively increased expression of TNF-alpha in CJD virus-infected brain tissues was verified by Northern and Western blot analyses, and astrocytes in areas with striking myelin sheath vacuolation were intensely stained with an antibody against murine TNF-alpha. The collective findings of TNF-alpha overexpression during the course of clinical disease suggest that TNF-alpha may mediate the myelin sheath vacuolation observed in experimental CJD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of the Bacillus subtilis nrgAB operon is derepressed during nitrogen-limited growth. We have identified a gene, tnrA, that is required for the activation of nrgAB expression under these growth conditions. Analysis of the DNA sequence of the tnrA gene revealed that it encodes a protein with sequence similarity to GlnR, the repressor of the B. subtilis glutamine synthetase operon. The tnrA mutant has a pleiotropic phenotype. Compared with wild-type cells, the tnrA mutant is impaired in its ability to utilize allantoin, gamma-aminobutyrate, isoleucine, nitrate, urea, and valine as nitrogen sources. During nitrogen-limited growth, transcription of the nrgAB, nasB, gabP, and ure genes is significantly reduced in the tnrA mutant compared with the levels seen in wild-type cells. In contrast, the level of glnRA expression is 4-fold higher in the, tnrA mutant than in wild-type cells during nitrogen restriction. The phenotype of the tnrA mutant indicates that a global nitrogen regulatory system is present in B. subtilis and that this system is distinct from the Ntr regulatory system found in enteric bacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin promoter factor 1 (IPF1), a member of the homeodomain protein family, serves an early role in pancreas formation, as evidenced by the lack of pancreas formation in mice carrying a targeted disruption of the IPF1 gene [Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. (1994) Nature (London) 371, 606-609]. In adults, IPF1 expression is restricted to the beta-cells in the islets of Langerhans. We report here that IPF1 induces expression of a subset of beta-cell-specific genes (insulin and islet amyloid polypeptide) when ectopically expressed in clones of transformed pancreatic islet alpha-cells. In contrast, expression of IPF1 in rat embryo fibroblasts factor failed to induce insulin and islet amyloid polypeptide expression. This is most likely due to the lack of at least one other essential insulin gene transcription factor, the basic helix-loop-helix protein Beta 2/NeuroD, which is expressed in both alpha- and beta-cells. We conclude that IPF1 is a potent transcriptional activator of endogenous insulin genes in non-beta islet cells, which suggests an important role of IPF1 in beta-cell maturation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transgenic mice were generated in which the cDNA for the human insulin-like growth factor 1B (IGF-1B) was placed under the control of a rat alpha-myosin heavy chain promoter. In mice heterozygous for the transgene, IGF-1B mRNA was not detectable in the fetal heart at the end of gestation, was present in modest levels at 1 day after birth, and increased progressively with postnatal maturation, reaching a peak at 75 days. Myocytes isolated from transgenic mice secreted 1.15 +/- 0.25 ng of IGF-1 per 10(6) cells per 24 hr versus 0.27 +/- 0.10 ng in myocytes from homozygous wild-type littermates. The plasma level of IGF-1 increased 84% in transgenic mice. Heart weight was comparable in wild-type littermates and transgenic mice up to 45 days of age, but a 42%, 45%, 62%, and 51% increase was found at 75, 135, 210, and 300 days, respectively, after birth. At 45, 75, and 210 days, the number of myocytes in the heart was 21%, 31%, and 55% higher, respectively, in transgenic animals. In contrast, myocyte cell volume was comparable in transgenic and control mice at all ages. In conclusion, overexpression of IGF-1 in myocytes leads to cardiomegaly mediated by an increased number of cells in the heart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate carcinoma is the second leading cause of death from malignancy in men in the United States. Prostate cancer cells express type I insulin-like growth factor receptor (IGF-IR) and prostate cancer selectively metastazises to bone, which is an environment rich in insulin-like growth factors (IGFs), thereby supporting a paracrine action for cancer cell proliferation. We asked whether the IGF-IR is coupled to tumorigenicity and invasion of prostate cancer. When rat prostate adenocarcinoma cells (PA-III) were stably transfected with an antisense IGF-IR expression construct containing the ZnSO4-inducible metallothionein-1 transcriptional promoter, the transfectants expressed high levels of IGF-IR antisense RNA after induction with ZnSO4, which resulted in dramatically reduced levels of endogenous IGF-IR mRNA. A significant reduction in expression both of tissue-type plasminogen activator and of urokinase-type plasminogen activator occurred in PA-III cells accompanying inhibition of IGF-IR. Subcutaneous injection of either nontransfected PA-III or PA-III cells transfected with vector minus the IGF-IR insert into nude mice resulted in large tumors after 4 weeks. However, mice injected with IGF-IR antisense-transfected PA-III cells either developed tumors 90% smaller than controls or remained tumor-free after 60 days of observation. When control-transfected PA-III cells were inoculated over the abraded calvaria of nude mice, large tumors formed with invasion of tumor cells into the brain parenchyma. In contrast, IGF-IR antisense transfectants formed significantly smaller tumors with no infiltration into brain. These results indicate an important role for the IGF/IGF-IR pathway in metastasis and provide a basis for targeting IGF-IR as a potential treatment for prostate cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare here the mechanisms of apoptotic death of PC12 cells induced by down-regulation of Cu2+,Zn2+ superoxide dismutase (SOD1) and withdrawal of trophic support (serum/nerve growth factor). Our previous results indicated that the initiating causes of death are different in each paradigm. However, bcl-2 rescues cells in either paradigm, suggesting common downstream elements to the cell death pathway. To determine whether the ICE [interleukin 1beta converting enzyme] family of proteases, which is required for apoptosis on trophic factor withdrawal, is also required for apoptosis induced by oxidative stress, we have developed a novel peptide inhibitor that mimics the common catalytic site of these enzymes and thereby blocks their access to substrates. This differs from the more usual pseudosubstrate approach to enzyme inhibition. Blockade of ICE family proteases by either this inhibitor or by a permeant competitive ICE family antagonist rescues PC12 cells from apoptotic death following apoptosis induced by down-regulation of SOD1, as well as from trophic factor/nerve growth factor deprivation. SOD1 down-regulation results in an increase in interleukin 1beta (IL- 1beta) production by the cells, and cell death under these conditions can be prevented by either blocking antibodies against IL-1beta or the IL-1 receptor antagonist (IL-1Ralpha). In contrast, trophic factor withdrawal does not increase IL-1beta secretion, and the blocking antibody failed to protect PC12 cells from trophic factor withdrawal, whereas the receptor antagonist was only partially protective at very high concentrations. There were substantial differences in the concentrations of pseudosubstrate inhibitors which rescued cells from SOD1 down-regulation and trophic factor deprivation. These results suggest the involvement of different members of the ICE family, different substrates, or both in the two different initiating causes of cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The therapeutic application of growth factors to human disease has become closer to reality with the advent of faster means of synthesizing these molecules and novel drug delivery strategies. Epidermal growth factor (EGF) belongs to a large family of molecules with the ability to modulate growth. Purified extracts of EGF have been used clinically to modulate gastrointestinal secretion of hormones and accelerate healing. EGF is also reported to have both vascular smooth muscle contractile and relaxing activity Cardiovascular studies were performed with the bioactive 48-amino acid fragment of human EGF in rodents and primates to determine the effects of EGF on blood pressure and heart rate in conscious animals. Intravenous infusion of EGF induced an initial pressor response in rats followed by a prolonged decrease in blood pressure. In contrast, in monkeys, EGF had dose-related blood pressure-lowering effects only; significant hypotension was observed at doses ranging from 3 to 300 microg/kg i.v. Hypotension was associated with modest tachycardia in both species. To our knowledge, this is the first report of hemodynamic effects of EGF in primates, and it clearly documents that the mitogenic role of growth factors such as EGF is but one aspect of their physiology.