72 resultados para circulating progenitor cells
Resumo:
We have compared the molecular architecture and function of the myeloperoxidase upstream enhancer in multipotential versus granulocyte-committed hematopoietic progenitor cells. We show that the enhancer is accessible in multipotential cell chromatin but functionally incompetent before granulocyte commitment. Multipotential cells contain both Pu1 and C-EBP alpha as enhancer-binding activities. Pu1 is unphosphorylated in both multipotential and granulocyte-committed cells but is phosphorylated in B lymphocytes, raising the possibility that differential phosphorylation may play a role in specifying its lymphoid versus myeloid functions. C-EBP alpha exists as multiple phosphorylated forms in the nucleus of both multipotential and granulocyte-committed cells. C-EBP beta is unphosphorylated and cytoplasmically localized in multipotential cells but exists as a phosphorylated nuclear enhancer-binding activity in granulocyte-committed cells. Granulocyte colony-stimulating factor-induced granulocytic differentiation of multipotential progenitor cells results in activation of C-EBP delta expression and functional recruitment of C-EBP delta and C-EBP beta to the nucleus. Our results implicate Pu1 and the C-EBP family as critical regulators of myeloperoxidase gene expression and are consistent with a model in which a temporal exchange of C-EBP isoforms at the myeloperoxidase enhancer mediates the transition from a primed state in multipotential cells to a transcriptionally active configuration in promyelocytes.
Resumo:
Signaling through the erythropoietin receptor (EPO-R) is crucial for proliferation, differentiation, and survival of erythroid progenitor cells. EPO induces homodimerization of the EPO-R, triggering activation of the receptor-associated kinase JAK2 and activation of STAT5. By mutating the eight tyrosine residues in the cytosolic domain of the EPO-R, we show that either Y343 or Y401 is sufficient to mediate maximal activation of STAT5; tyrosine residues Y429 and Y431 can partially activate STAT5. Comparison of the sequences surrounding these tyrosines reveals YXXL as the probable motif specifying recruitment of STAT5 to the EPO-R. Expression of a mutant EPO-R lacking all eight tyrosine residues in the cytosolic domain supported a low but detectable level of EPO-induced STAT5 activation, indicating the existence of an alternative pathway for STAT5 activation independent of any tyrosine in the EPO-R. The kinetics of STAT5 activation and inactivation were the same, regardless of which tyrosine residue in the EPO-R mediated its activation or whether the alternative pathway was used. The ability of mutant EPO-Rs to activate STAT5 did not directly correlate with their mitogenic potential.
Resumo:
BEN/SC1/DM-GRASP is a membrane glycoprotein of the immunoglobulin superfamily isolated in the chick by several groups, including ours. Its expression is strictly developmentally regulated in several cell types of the nervous and hemopoietic systems and in certain epithelia. Each of these cell types expresses isoforms of BEN which differ by their level of N-glycosylation and by the presence or absence of the HNK-1 carbohydrate epitope. In the present work, the influence of glycosylation on BEN homophilic binding properties was investigated by two in vitro assays. First, each BEN isoform was covalently coupled to microspheres carrying different fluorescent dyes and an aggregation test was performed. We found that homophilic aggregates form indifferently between the same or different BEN isoforms, showing that glycosylation does not affect BEN homophilic binding properties. This was confirmed in the second test, where the BEN-coated microspheres bound to the neurites of BEN- expressing neurons, irrespective of the isoform considered. The transient expression of the BEN antigen on hemopoietic progenitors prompted us to see whether it might play a role in their proliferation and differentiation. When added to hemopoietic progenitor cells in an in vitro colony formation assay anti-BEN immunoglobulin strongly inhibited myeloid, but not erythroid, colony formation although both types of precursors express the molecule.
Resumo:
In the vertebrate central nervous system, the retina has been a useful model for studies of cell fate determination. Recent results from studies conducted in vitro and in vivo suggest a model of retinal development in which both the progenitor cells and the environment change over time. The model is based upon the notion that the mitotic cells within the retina change in their response properties, or "competence", during development. These changes presage the ordered appearance of distinct cell types during development and appear to be necessary for the production of the distinct cell types. As the response properties of the cells change, so too do the environmental signals that the cells encounter. Together, intrinsic properties and extrinsic cues direct the choice of cell fate.
Resumo:
Although the CD34 antigen is widely used in the identification and purification of hemopoietic stem and progenitor cells, its function within hemopoiesis is unknown. We have investigated this issue by ectopically expressing human (hu) CD34 on the surface of murine hemopoietic cells. Forced expression of hu-CD34 in the thymocytes of transgenic mice did not appear to affect the development, maturation, or distribution of murine T cells but did significantly increase their ability to adhere to bone marrow stromal layers of human but not mouse origin. Ectopic expression of hu-CD34 on murine 416B cells, a multipotential progenitor that expresses murine CD34, yielded similar results. In both cases hu-CD34-dependent adhesion was enhanced by molecular engagement of the hu-CD34 protein using anti-CD34 antibodies. These results provide evidence that CD34 promotes the adhesive interactions of hemopoietic cells with the stromal microenvironment of the bone marrow thereby implicating CD34 in regulation and compartmentalization of stem cells. We propose that CD34 regulates these processes in part via an indirect mechanism, signaling changes in cellular adhesion in response to molecular recognition of an as yet unidentified stromal CD34 counterreceptor or ligand.
Resumo:
Clinical evidence of hematopoietic restoration with placental/umbilical cord blood (PCB) grafts indicates that PCB can be a useful source of hematopoietic stem cells for routine bone marrow reconstitution. In the unrelated setting, human leukocyte antigen (HLA)-matched donors must be obtained for candidate patients and, hence, large panels of frozen HLA-typed PCB units must be established. The large volume of unprocessed units, consisting mostly of red blood cells, plasma, and cryopreservation medium, poses a serious difficulty in this effort because storage space in liquid nitrogen is limited and costly. We report here that almost all the hematopoietic colony-forming cells present in PCB units can be recovered in a uniform volume of 20 ml by using rouleaux formation induced by hydroxyethyl starch and centrifugation to reduce the bulk of erythrocytes and plasma and, thus, concentrate leukocytes. This method multiples the number of units that can be stored in the same freezer space as much as 10-fold depending on the format of the storage system. We have also investigated the proportion of functional stem/progenitor cells initially present that are actually available to the recipient when thawed cryopreserved PCB units are infused. Progenitor cell viability is measurably decreased when thawed cells, still suspended in hypertonic cryopreservative solutions, are rapidly mixed with large volumes of isotonic solutions or plasma. The osmotic damage inflicted by the severe solute concentration gradient, however, can be averted by a simple 2-fold dilution after thawing, providing almost total recovery of viable hematopoietic progenitor cells.
Resumo:
The retinoblastoma (RB) gene specifies a nuclear phosphoprotein (pRb 105), which is a prototype tumor suppressor inactivated in a variety of human tumors. Recent studies suggest that RB is also involved in embryonic development of murine central nervous and hematopoietic systems. We have investigated RB expression and function in human adult hematopoiesis--i.e., in liquid suspension culture of purified quiescent hematopoietic progenitor cells (HPCs) induced by growth factor stimulus to proliferation and unilinage differentiation/maturation through the erythroid or granulocytic lineage. In the initial HPC differentiation stages, the RB gene is gradually induced at the mRNA and protein level in both erythroid and granulopoietic cultures. In late HPC differentiation and then precursor maturation, RB gene expression is sustained in the erythroid lineage, whereas it is sharply downmodulated in the granulocytic series. Functional studies were performed by treatment of HPC differentiation culture with phosphorothioate antisense oligomer targeting Rb mRNA; coherent with the expression pattern, oligomer treatment of late HPCs causes a dose-dependent and selective inhibition of erythroid colony formation. These observations suggest that the RB gene plays an erythroid- and stage-specific functional role in normal adult hematopoiesis, particularly at the level of late erythroid HPCs.
Resumo:
Successful gene therapy depends on stable transduction of hematopoietic stem cells. Target cells must cycle to allow integration of Moloney-based retroviral vectors, yet hematopoietic stem cells are quiescent. Cells can be held in quiescence by intracellular cyclin-dependent kinase inhibitors. The cyclin-dependent kinase inhibitor p15INK4B blocks association of cyclin-dependent kinase (CDK)4/cyclin D and p27kip-1 blocks activity of CDK2/cyclin A and CDK2/cyclin E, complexes that are mandatory for cell-cycle progression. Antibody neutralization of β transforming growth factor (TGFβ) in serum-free medium decreased levels of p15INK4B and increased colony formation and retroviral-mediated transduction of primary human CD34+ cells. Although TGFβ neutralization increased colony formation from more primitive, noncycling hematopoietic progenitors, no increase in M-phase-dependent, retroviral-mediated transduction was observed. Transduction of the primitive cells was augmented by culture in the presence of antisense oligonucleotides to p27kip-1 coupled with TGFβ-neutralizing antibodies. The transduced cells engrafted immune-deficient mice with no alteration in human hematopoietic lineage development. We conclude that neutralization of TGFβ, plus reduction in levels of the cyclin-dependent kinase inhibitor p27, allows transduction of primitive and quiescent hematopoietic progenitor populations.
Resumo:
Earlier studies have shown that Kaposi sarcomas contain cells infected with human herpesvirus (HHV) 6B, and in current studies we report that both AIDS-associated and classic-sporadic Kaposi sarcoma contain HHV-7 genome sequences detectable by PCR. To determine the distribution of HHV-7-infected cells relative to those infected with HHV-6, sections from paraffin-embedded tissues were allowed to react with antibodies to HHV-7 virion tegument phosphoprotein pp85 and to HHV-6B protein p101. The antibodies are specific for HHV-7 and HHV-6B, respectively, and they retained reactivity for antigens contained in formalin-fixed, paraffin-embedded tissue samples. We report that (i) HHV-7 pp85 was present in 9 of 32 AIDS-associated Kaposi sarcomas, and in 1 of 7 classical-sporadic HIV-negative Kaposi sarcomas; (ii) HHV-7 pp85 was detected primarily in cells bearing the CD68 marker characteristic of the monocyte/macrophage lineage present in or surrounding the Kaposi sarcoma lesions; and (iii) in a number of Kaposi sarcoma specimens, tumor-associated CD68+ monocytes/macrophages expressed simultaneously antigens from both HHV-7 and HHV-6B, and therefore appeared to be doubly infected with the two viruses. CD68+ monocytes/macrophages infected with HHV-7 were readily detectable in Kaposi sarcoma, but virtually absent from other normal or pathological tissues that harbor macrophages. Because all of the available data indicate that HHV-7 infects CD4+ T lymphocytes, these results suggest that the environment of the Kaposi sarcoma (i) attracts circulating peripheral lymphocytes and monocytes, triggers the replication of latent viruses, and thereby increases the local concentration of viruses, (ii) renders CD68+ monocytes/macrophages susceptible to infection with HHV-7, and (iii) the combination of both events enables double infections of cells with both HHV-6B and HHV-7.
Resumo:
The protooncogene c-abl encodes a nonreceptor tyrosine kinase whose cellular function is unknown. To study the possible involvement of c-Abl in proliferation, differentiation, and cell cycle regulation of early B cells, long-term lymphoid bone marrow cultures were established from c-abl-deficient mice and their wild-type littermates. Interleukin 7-dependent progenitor B-cell clones and lines expressing B220 and CD43 could be generated from both mutant and wild-type mice. The mutant and wild-type lines displayed no difference in their proliferative capacity as measured by thymidine incorporation in response to various concentrations of interleukin 7. Similarly, c-abl deficiency did not interfere with the ability of mutant clones to differentiate into surface IgM-positive cells in vitro. Analysis of cultures after growth factor deprivation, however, revealed a strikingly accelerated rate of cell death in c-abl mutant cells, due to apoptosis as confirmed by terminal deoxynucleotidyltransferase-mediated UTP nick end labeling analysis. Furthermore, a greater susceptibility to apoptotic cell death in c-abl mutant cells was also observed after glucocorticoid treatment. These results suggest that mutant c-Abl renders the B-cell progenitors more sensitive to apoptosis, and may account for some of the phenotypes observed in c-abl-deficient animals.
Resumo:
In contrast to naive lymphocytes, memory/effector lymphocytes can access nonlymphoid effector sites and display restricted, often tissue-selective, migration behavior. The cutaneous lymphocyte-associated antigen (CLA) defines a subset of circulating memory T cells that selectively localize in cutaneous sites mediated in part by the interaction of CLA with its vascular ligand E-selectin. Here, we report the identification and characterization of a CC chemokine, cutaneous T cell-attracting chemokine (CTACK). Both human and mouse CTACK are detected only in skin by Southern and Northern blot analyses. Specifically, CTACK message is found in the mouse epidermis and in human keratinocytes, and anti-CTACK mAbs predominantly stain the epithelium. Finally, CTACK selectively attracts CLA+ memory T cells. Taken together, these results suggest an important role for CTACK in recruitment of CLA+ T cells to cutaneous sites. CTACK is predominantly expressed in the skin and selectively attracts a tissue-specific subpopulation of memory lymphocytes.
Resumo:
We have identified a rare (≈0.05–0.1%) population of cells (Thy-1hiCD16+CD44hiCD2−TCRαβ−B220−Mac-1−NK1.1−) in the adult mouse bone marrow that generates CD4+ and CD8+ TCRαβ+ T cells after tissue culture for 48 hr in the presence of Ly5 congenic marrow cells. The essential stages in the maturation of the progenitors were determined; the stages included an early transition from CD2−CD16+CD44hiTCRαβ− to CD2+CD16int/−CD44int/−TCRαβ− cells, and a later transition to CD4+CD8+TCRαβ+ double-positive T cells that rapidly generate the CD4+ and CD8+ single-positive T cells. The maturation of the progenitors is almost completely arrested at the CD2+TCRαβ− stage by the presence of mature T cells at the initiation of cultures. This alternate pathway is supported by the marrow microenvironment; it recapitulates critical intermediary steps in intrathymic T cell maturation.
Resumo:
The goal of this study was to identify the circulating cell that is the immediate precursor of tissue macrophages. ROSA 26 marrow mononuclear cells (containing the β-geo transgene that encodes β-galactosidase and neomycin resistance activities) were cultured in the presence of macrophage colony-stimulating factor and flt3 Ligand for 6 days to generate monocytic cells at all stages of maturation. Expanded monocyte cells (EMC), the immature (ER-MP12+) and more mature (ER-MP20+) subpopulations, were transplanted into irradiated B6/129 F2 mice. β-gal staining of tissue sections from animals 15 min after transplantation demonstrated that the donor cells landed randomly. By 3 h, donor cells in lung and liver were more frequent in animals transplanted with ER-MP20+ (more mature) EMC than in animals transplanted with unseparated EMC or fresh marrow mononuclear cells, a pattern that persisted at 3 and 7 days. At 3 days, donor cells were found in spleen, liver, lung, and brain (rarely) as clusters as well as individual cells. By 7 and 14 days, the clusters had increased in size, and the cells expressed the macrophage antigen F4/80, suggesting that further replication and differentiation had occurred. PCR for the neogene was used to quantitate the amount of donor DNA in tissues from transplanted animals and confirmed that ER-MP20+ EMC preferentially engrafted. These data demonstrate that a mature monocytic cell gives rise to tissue macrophages. Because these cells can be expanded and manipulated in vitro, they may be a suitable target population for gene therapy of lysosomal storage diseases.
Resumo:
P210 Bcr-Abl is an activated tyrosine kinase oncogene encoded by the Philadelphia chromosome associated with human chronic myelogenous leukemia (CML). The disease represents a clonal disorder arising in the pluripotent hematopoietic stem cell. During the chronic phase, patients present with a dramatic expansion of myeloid cells and a mild anemia. Retroviral gene transfer and transgenic expression in rodents have demonstrated the ability of Bcr-Abl to induce various types of leukemia. However, study of human CML or rodent models has not determined the direct and immediate effects of Bcr-Abl on hematopoietic cells from those requiring secondary genetic or epigenetic changes selected during the pathogenic process. We utilized tetracycline-regulated expression of Bcr-Abl from a promoter engineered for robust expression in primitive stem cells through multilineage blood cell development in combination with the in vitro differentiation of embryonal stem cells into hematopoietic elements. Our results demonstrate that Bcr-Abl expression alone is sufficient to increase the number of multipotent and myeloid lineage committed progenitors in a dose-dependent manner while suppressing the development of committed erythroid progenitors. These effects are reversible upon extinguishing Bcr-Abl expression. These findings are consistent with Bcr-Abl being the sole genetic change needed for the establishment of the chronic phase of CML and provide a powerful system for the analysis of any genetic change that alters cell growth and lineage choices of the hematopoietic stem cell.
Resumo:
Cells of the craniofacial skeleton are derived from a common mesenchymal progenitor. The regulatory factors that control their differentiation into various cell lineages are unknown. To investigate the biological function of dentin matrix protein 1 (DMP1), an extracellular matrix gene involved in calcified tissue formation, stable transgenic cell lines and adenovirally infected cells overexpressing DMP1 were generated. The findings in this paper demonstrate that overexpression of DMP1 in pluripotent and mesenchyme-derived cells such as C3H10T1/2, MC3T3-E1, and RPC-C2A can induce these cells to differentiate and form functional odontoblast-like cells. Functional differentiation of odontoblasts requires unique sets of genes being turned on and off in a growth- and differentiation-specific manner. The genes studied include transcription factors like core binding factor 1 (Cbfa1), bone morphogenetic protein 2 (BMP2), and BMP4; early markers for extracellular matrix deposition like alkaline phosphatase (ALP), osteopontin, osteonectin, and osteocalcin; and late markers like DMP2 and dentin sialoprotein (DSP) that are expressed by terminally differentiated odontoblasts and are responsible for the formation of tissue-specific dentin matrix. However, this differentiation pathway was limited to mesenchyme-derived cells only. Other cell lines tested by the adenoviral expression system failed to express odontoblast-phenotypic specific genes. An in vitro mineralized nodule formation assay demonstrated that overexpressed cells could differentiate and form a mineralized matrix. Furthermore, we also demonstrate that phosphorylation of Cbfa1 (osteoblast-specific transcription factor) was not required for the expression of odontoblast-specific genes, indicating the involvement of other unidentified odontoblast-specific transcription factors or coactivators. Cell lines that differentiate into odontoblast-like cells are useful tools for studying the mechanism involved in the terminal differentiation process of these postmitotic cells.