140 resultados para chromatin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some growth factors transduce positive growth signals, while others can act as growth inhibitors. Nuclear signaling events of previously quiescent cells stimulated with various growth factors have been studied by isolating the complexed chromatin-associated proteins and chromatin-associated proteins. Signals from the plasma membrane are integrated within the cells and quickly transduced to the nucleus. It is clear that several growth factors, such as epidermal growth factor, transforming growth factor alpha (but not transforming growth factor beta), and platelet-derived growth factor, utilize similar intracellular signaling biochemistries to modulate nucleosomal characteristics. The very rapid and consistent phosphorylation of nuclear p33, p54, and low molecular mass proteins in the range of 15-18 kDa after growth factor stimulation implies that there is a coordination and integration of the cellular signaling processes. Additionally, phosphorylation of p33 and some low molecular mass histones has been found to occur within 5 min of growth factor treatment and to reach a maximum by 30 min. In this study, we report that Neu receptor activating factor also utilizes the same signaling mechanism and causes p33 to become phosphorylated. In addition, both the tumor promoter okadaic acid (which inhibits protein phosphatases 1 and 2A) and phorbol ester (phorbol 12-tetradecanoate 13-acetate) stimulate phosphorylation of p33, p54, and low molecular mass histones. However, transforming growth factor beta, which is a growth inhibitor for fibroblasts, fails to increase p33 phosphorylation. In general, p33 phosphorylation patterns correspond to positive and negative mitogenic signal transduction. p33 isolated from the complexed chromatin-associated protein fraction appears to be a kinase, or tightly associated with a kinase, and shares antigenicity with the cell division cycle-dependent Cdk2 kinase as determined by antibody-dependent analysis. The rapid phosphorylation of nucleosomal proteins may influence sets of early genes needed for the induction and progression of the cell cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myotonic dystrophy is caused by an expansion of a CTG triplet repeat sequence in the 3' noncoding region of a protein kinase gene, yet the mechanism by which the triplet repeat expansion causes disease remains unknown. This report demonstrates that a DNase I hypersensitive site is positioned 3' of the triplet repeat in the wild-type allele in both fibroblasts and skeletal muscle cells. In three unrelated individuals with myotonic dystrophy that have large expansions of the triplet repeat, the allele with the triplet repeat expansion exhibited both overall DNase I resistance and inaccessibility of nucleases to the adjacent hypersensitive site. These results indicate that the triplet repeat expansion alters the adjacent chromatin structure, establishing a region of condensed chromatin, and suggests a molecular mechanism for myotonic dystrophy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ALL-1 gene was discovered by virtue of its involvement in human acute leukemia. Its Drosophila homolog trithorax (trx) is a member of the trx-Polycomb gene family, which maintains correct spatial expression of the Antennapedia and bithorax complexes during embryogenesis. The C-terminal SET domain of ALL-1 and TRITHORAX (TRX) is a 150-aa motif, highly conserved during evolution. We performed yeast two hybrid screening of Drosophila cDNA library and detected interaction between a TRX polypeptide spanning SET and the SNR1 protein. SNR1 is a product of snr1, which is classified as a trx group gene. We found parallel interaction in yeast between the SET domain of ALL-1 and the human homolog of SNR1, INI1 (hSNF5). These results were confirmed by in vitro binding studies and by demonstrating coimmunoprecipitation of the proteins from cultured cells and/or transgenic flies. Epitope-tagged SNR1 was detected at discrete sites on larval salivary gland polytene chromosomes, and these sites colocalized with around one-half of TRX binding sites. Because SNR1 and INI1 are constituents of the SWI/SNF complex, which acts to remodel chromatin and consequently to activate transcription, the interactions we observed suggest a mechanism by which the SWI/SNF complex is recruited to ALL-1/trx targets through physical interactions between the C-terminal domains of ALL-1 and TRX and INI1/SNR1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The BTB domain (also known as the POZ domain) is an evolutionarily conserved protein–protein interaction motif found at the N terminus of 5–10% of C2H2-type zinc-finger transcription factors, as well as in some actin-associated proteins bearing the kelch motif. Many BTB proteins are transcriptional regulators that mediate gene expression through the control of chromatin conformation. In the human promyelocytic leukemia zinc finger (PLZF) protein, the BTB domain has transcriptional repression activity, directs the protein to a nuclear punctate pattern, and interacts with components of the histone deacetylase complex. The association of the PLZF BTB domain with the histone deacetylase complex provides a mechanism of linking the transcription factor with enzymatic activities that regulate chromatin conformation. The crystal structure of the BTB domain of PLZF was determined at 1.9 Å resolution and reveals a tightly intertwined dimer with an extensive hydrophobic interface. Approximately one-quarter of the monomer surface area is involved in the dimer intermolecular contact. These features are typical of obligate homodimers, and we expect the full-length PLZF protein to exist as a branched transcription factor with two C-terminal DNA-binding regions. A surface-exposed groove lined with conserved amino acids is formed at the dimer interface, suggestive of a peptide-binding site. This groove may represent the site of interaction of the PLZF BTB domain with nuclear corepressors or other nuclear proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIDS is characterized by a progressive decrease of CD4+ helper T lymphocytes. Destruction of these cells may involve programmed cell death, apoptosis. It has previously been reported that apoptosis can be induced even in noninfected cells by HIV-1 gp120 and anti-gp120 antibodies. HIV-1 gp120 binds to T cells via CD4 and the chemokine coreceptor CXCR4 (fusin/LESTR). Therefore, we investigated whether CD4 and CXCR4 mediate gp120-induced apoptosis. We used human peripheral blood lymphocytes, malignant T cells, and CD4/CXCR4 transfectants, and found cell death induced by both cell surface receptors, CD4 and CXCR4. The induced cell death was rapid, independent of known caspases, and lacking oligonucleosomal DNA fragmentation. In addition, the death signals were not propagated via p56lck and Giα. However, the cells showed chromatin condensation, morphological shrinkage, membrane inversion, and reduced mitochondrial transmembrane potential indicative of apoptosis. Significantly, apoptosis was exclusively observed in CD4+ but not in CD8+ T cells, and apoptosis triggered via CXCR4 was inhibited by stromal cell-derived factor-1, the natural CXCR4 ligand. Thus, this mechanism of apoptosis might contribute to T cell depletion in AIDS and might have major implications for therapeutic intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The origin recognition complex (ORC), first identified in Saccharomyces cerevisiae (sc), is a six-subunit protein complex that binds to DNA origins. Here, we report the identification and cloning of cDNAs encoding the six subunits of the ORC of Schizosaccharomyces pombe (sp). Sequence analyses revealed that spOrc1, 2, and 5 subunits are highly conserved compared with their counterparts from S. cerevisiae, Xenopus, Drosophila, and human. In contrast, both spOrc3 and spOrc6 subunits are poorly conserved. As reported by Chuang and Kelly [(1999) Proc. Natl. Acad. Sci. USA 96, 2656–2661], the C-terminal region of spOrc4 is also conserved whereas the N terminus uniquely contains repeats of a sequence that binds strongly to AT-rich DNA regions. Consistent with this, extraction of S. pombe chromatin with 1 M NaCl, or after DNase I treatment, yielded the six-subunit ORC, whereas extraction with 0.3 M resulted in five-subunit ORC lacking spOrc4p. The spORC can be reconstituted in vitro with all six recombinant subunits expressed in the rabbit reticulocyte system. The association of spOrc4p with the other subunits required the removal of DNA from reaction mixture by DNase I. This suggests that a strong interaction between spOrc4p and DNA can prevent the isolation of the six-subunit ORC. The unique DNA-binding properties of the spORC may contribute to our understanding of the sequence-specific recognition required for the initiation of DNA replication in S. pombe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each of the core histone proteins within the nucleosome has a central “structured” domain that comprises the spool onto which the DNA superhelix is wrapped and an N-terminal “tail” domain in which the structure and molecular interactions have not been rigorously defined. Recent studies have shown that the N-terminal domains of core histones probably contact both DNA and proteins within the nucleus and that these interactions play key roles in the regulation of nuclear processes (such as transcription and replication) and are critical in the formation of the chromatin fiber. An understanding of these complex mechanisms awaits identification of the DNA or protein sites within chromatin contacted by the tail domains. To this end, we have developed a site-specific histone protein–DNA photocross-linking method to identify the DNA binding sites of the N-terminal domains within chromatin complexes. With this approach, we demonstrate that the N-terminal tail of H2A binds DNA at two defined locations within isolated nucleosome cores centered around a position ≈40 bp from the nucleosomal dyad and that this tail probably adopts a defined structure when bound to DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recurring translocation t(11;16)(q23;p13.3) has been documented only in cases of acute leukemia or myelodysplasia secondary to therapy with drugs targeting DNA topoisomerase II. We show that the MLL gene is fused to the gene that codes for CBP (CREB-binding protein), the protein that binds specifically to the DNA-binding protein CREB (cAMP response element-binding protein) in this translocation. MLL is fused in-frame to a different exon of CBP in two patients producing chimeric proteins containing the AT-hooks, methyltransferase homology domain, and transcriptional repression domain of MLL fused to the CREB binding domain or to the bromodomain of CBP. Both fusion products retain the histone acetyltransferase domain of CBP and may lead to leukemia by promoting histone acetylation of genomic regions targeted by the MLL AT-hooks, leading to transcriptional deregulation via aberrant chromatin organization. CBP is the first partner gene of MLL containing well defined structural and functional motifs that provide unique insights into the potential mechanisms by which these translocations contribute to leukemogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histone acetylation is thought to have a role in transcription. To gain insight into the role of histone acetylation in retinoid-dependent transcription, we studied the effects of trichostatin A (TSA), a specific inhibitor of histone deacetylase, on P19 embryonal carcinoma cells. We show that coaddition of TSA and retinoic acid (RA) markedly enhances neuronal differentiation in these cells, although TSA alone does not induce differentiation but causes extensive apoptosis. Consistent with the cooperative effect of TSA and RA, coaddition of the two agents synergistically enhanced transcription from stably integrated RA-responsive promoters. The transcriptional synergy by TSA and RA required the RA-responsive element and a functional retinoid X receptor (RXR)/retinoic acid receptor (RAR) heterodimer, both obligatory for RA-dependent transcription. Furthermore, TSA led to promoter activation by an RXR-selective ligand that was otherwise inactive in transcription. In addition, TSA enhanced transcription from a minimum basal promoter, independently of the RA-responsive element. Finally, we show that TSA alone or in combination with RA increases in vivo endonuclease sensitivity within the RA-responsive promoter, suggesting that TSA treatment might alter a local chromatin environment to enhance RXR/RAR heterodimer action. Thus, these results indicate that histone acetylation influences activity of the heterodimer, which is in line with the observed interaction between the RXR/RAR heterodimer and a histone acetylase presented elsewhere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The murine gene CHD1 (MmCHD1) was previously isolated in a search for proteins that bound a DNA promoter element. The presence of chromo (chromatin organization modifier) domains and an SNF2-related helicase/ATPase domain led to speculation that this gene regulated chromatin structure or gene transcription. This study describes the cloning and characterization of three novel human genes related to MmCHD1. Examination of sequence databases produced several more related genes, most of which were not known to be similar to MmCHD1, yielding a total of 12 highly conserved CHD genes from organisms as diverse as yeast and mammals. The major region of sequence variation is in the C-terminal part of the protein, a region with DNA-binding activity in MmCHD1. Targeted deletion of ScCHD1, the sole Saccharomyces cerevesiae CHD gene, was performed with deletion strains being less sensitive than wild type to the cytotoxic effect of 6-azauracil. This finding suggested that enhanced transcriptional arrest at RNA polymerase II pause sites due to 6-azauracil-induced nucleotide pool depletion was reduced in the deletion strain and that ScCHD1 inhibited transcription. This observation, along with the known roles of other proteins with chromo or SNF2-related helicase/ATPase domains, suggests that alteration of gene expression by CHD genes might occur by modifications of chromatin structure, with altered access of the transcriptional apparatus to its chromosomal DNA template.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein acetylation has been implicated in the regulation of HIV-1 gene transcription. Here, we have exploited the activities of four native histone acetyltransferase (HAT) complexes from yeast to directly test whether acetylation regulates HIV-1 transcription in vitro. HAT activities acetylating either histone H3 (SAGA, Ada, and NuA3) or H4 (NuA4) stimulate HIV-1 transcription from preassembled nucleosomal templates in an acetyl CoA-dependent manner. HIV-1 transcription from histone-free DNA is not affected by the HATs, indicating that these activities function in a chromatin-specific fashion. For Ada and NuA4, we demonstrate that acetylation of only histone proteins mediates enhanced transcription, suggesting that these complexes facilitate transcription at least in part by modifying histones. To address a potential mechanism by which HAT complexes stimulate transcription, we performed a restriction enzyme accessibility analysis. Each of the HATs increases the cutting efficiencies of restriction endonucleases targeting the HIV-1 chromatin templates in a manner not requiring transcription, suggesting that histone acetylation leads to nucleosome remodeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ALL-1 gene positioned at 11q23 is directly involved in human acute leukemia either through a variety of chromosome translocations or by partial tandem duplications. ALL-1 is the human homologue of Drosophila trithorax which plays a critical role in maintaining proper spatial and temporal expression of the Antennapedia-bithorax homeotic genes determining the fruit fly’s body pattern. Utilizing specific antibodies, we found that the ALL-1 protein distributes in cultured cells in a nuclear punctate pattern. Several chimeric ALL-1 proteins encoded by products of the chromosome translocations and expressed in transfected cells showed similar speckles. Dissection of the ALL-1 protein identified within its ≈1,100 N-terminal residues three polypeptides directing nuclear localization and at least two main domains conferring distribution in dots. The latter spanned two short sequences conserved with TRITHORAX. Enforced nuclear expression of other domains of ALL-1, such as the PHD (zinc) fingers and the SET motif, resulted in uniform nonpunctate patterns. This indicates that positioning of the ALL-1 protein in subnuclear structures is mediated via interactions of ALL-1 N-terminal elements. We suggest that the speckles represent protein complexes which contain multiple copies of the ALL-1 protein and are positioned at ALL-1 target sites on the chromatin. Therefore, the role of the N-terminal portion of ALL-1 is to direct the protein to its target genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activity of the M26 meiotic recombination hot spot of Schizosaccharomyces pombe depends on the presence of the heptamer 5′-ATGACGT-3′. Transplacement of DNA fragments containing the ade6-M26 gene to other chromosomal loci has previously demonstrated that the heptamer functions in some, but not all, transplacements, suggesting that hot spot activity depends on chromosomal context. In this study, hot spot activity was tested in the absence of gross DNA changes by using site-directed mutagenesis to create the heptamer sequence at novel locations in the genome. When created by mutagenesis of 1–4 bp in the ade6 and ura4 genes, the heptamer was active as a recombination hot spot, in an orientation-independent manner, at all locations tested. Thus, the heptamer sequence can create an active hot spot in other chromosomal contexts, provided that the gross chromosomal structure is not altered; this result is consistent with the hypothesis that a specific higher-order chromatin structure is required for M26 hot spot activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ATRX is a member of the SNF2 family of helicase/ATPases that is thought to regulate gene expression via an effect on chromatin structure and/or function. Mutations in the hATRX gene cause severe syndromal mental retardation associated with α-thalassemia. Using indirect immunofluorescence and confocal microscopy we have shown that ATRX protein is associated with pericentromeric heterochromatin during interphase and mitosis. By coimmunofluorescence, ATRX localizes with a mouse homologue of the Drosophila heterochromatic protein HP1 in vivo, consistent with a previous two-hybrid screen identifying this interaction. From the analysis of a trap assay for nuclear proteins, we have shown that the localization of ATRX to heterochromatin is encoded by its N-terminal region, which contains a conserved plant homeodomain-like finger and a coiled-coil domain. In addition to its association with heterochromatin, at metaphase ATRX clearly binds to the short arms of human acrocentric chromosomes, where the arrays of ribosomal DNA are located. The unexpected association of a putative transcriptional regulator with highly repetitive DNA provides a potential explanation for the variability in phenotype of patients with identical mutations in the ATRX gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is thought that insulators demarcate transcriptionally and structurally independent chromatin domains. Insulators are detected by their ability to block enhancer–promoter interactions in a directional manner, and protect a transgene from position effects. Most studies are performed in stably transformed cells or organisms. Here we analyze the enhancer-blocking activity of the chicken β-globin insulator in transient transfection experiments in both erythroid and nonerythroid cell lines. We show that four tandem copies of a 90-bp fragment of this insulator were able to block an enhancer in these experiments. In circular plasmids, placement on either side of the enhancer reduced activity, but when the plasmid was linearized, the enhancer-blocking activity was observed only when the insulator was placed between the promoter and the enhancer. These observations are consistent with the position-dependent enhancer-blocking activity of the insulator observed in stable transformation experiments.