80 resultados para cell-assembly
Resumo:
Yeast and vertebrate nuclear pores display significant morphological similarity by electron microscopy, but sequence similarity between the respective proteins has been more difficult to observe. Herein we have identified a vertebrate nucleoporin, Nup93, in both human and Xenopus that has proved to be an evolutionarily related homologue of the yeast nucleoporin Nic96p. Polyclonal antiserum to human Nup93 detects corresponding proteins in human, rat, and Xenopus cells. Immunofluorescence and immunoelectron microscopy localize vertebrate Nup93 at the nuclear basket and at or near the nuclear entry to the gated channel of the pore. Immunoprecipitation from both mammalian and Xenopus cell extracts indicates that a small fraction of Nup93 physically interacts with the nucleoporin p62, just as yeast Nic96p interacts with the yeast p62 homologue. However, a large fraction of vertebrate Nup93 is extracted from pores and is also present in Xenopus egg extracts in complex with a newly discovered 205-kDa protein. Mass spectrometric sequencing of the human 205-kDa protein reveals that this protein is encoded by an open reading frame, KIAAO225, present in the human database. The putative human nucleoporin of 205 kDa has related sequence homologues in Caenorhabditis elegans and Saccharomyces cerevisiae. To analyze the role of the Nup93 complex in the pore, nuclei were assembled that lack the Nup93 complex after immunodepletion of a Xenopus nuclear reconstitution extract. The Nup93-complex–depleted nuclei are clearly defective for correct nuclear pore assembly. From these experiments, we conclude that the vertebrate and yeast pore have significant homology in their functionally important cores and that, with the identification of Nup93 and the 205-kDa protein, we have extended the knowledge of the nearest-neighbor interactions of this core in both yeast and vertebrates.
Resumo:
The number of nuclear pore complexes (NPCs) in individual nuclei of the yeast Saccharomyces cerevisiae was determined by computer-aided reconstruction of entire nuclei from electron micrographs of serially sectioned cells. Nuclei of 32 haploid cells at various points in the cell cycle were modeled and found to contain between 65 and 182 NPCs. Morphological markers, such as cell shape and nuclear shape, were used to determine the cell cycle stage of the cell being examined. NPC number was correlated with cell cycle stage to reveal that the number of NPCs increases steadily, beginning in G1-phase, suggesting that NPC assembly occurs continuously throughout the cell cycle. However, the accumulation of nuclear envelope observed during the cell cycle, indicated by nuclear surface area, is not continuous at the same rate, such that the density of NPCs per unit area of nuclear envelope peaks in apparent S-phase cells. Analysis of the nuclear envelope reconstructions also revealed no preferred NPC-to-NPC distance. However, NPCs were found in large clusters over regions of the nuclear envelope. Interestingly, clusters of NPCs were most pronounced in early mitotic nuclei and were found to be associated with the spindle pole bodies, but the functional significance of this association is unknown.
Resumo:
When ciliogenesis first occurs in sea urchin embryos, the major building block proteins, tubulin and dynein, exist in substantial pools, but most 9+2 architectural proteins must be synthesized de novo. Pulse-chase labeling with [3H]leucine demonstrates that these proteins are coordinately up-regulated in response to deciliation so that regeneration ensues and the tubulin and dynein pools are replenished. Protein labeling and incorporation into already-assembled cilia is high, indicating constitutive ciliary gene expression and steady-state turnover. To determine whether either the synthesis of tubulin or the size of its available pool is coupled to the synthesis or turnover of the other 9+2 proteins in some feedback manner, fully-ciliated mid- or late-gastrula stage Strongylocentrotus droebachiensis embryos were pulse labeled in the presence of colchicine or taxol at concentrations that block ciliary growth. As a consequence of tubulin autoregulation mediated by increased free tubulin, no labeling of ciliary tubulin occurred in colchicine-treated embryos. However, most other proteins were labeled and incorporated into steady-state cilia at near-control levels in the presence of colchicine or taxol. With taxol, tubulin was labeled as well. An axoneme-associated 78 kDa cognate of the molecular chaperone HSP70 correlated with length during regeneration; neither colchicine nor taxol influenced the association of this protein in steady-state cilia. These data indicate that 1) ciliary protein synthesis and turnover is independent of tubulin synthesis or tubulin pool size; 2) steady-state incorporation of labeled proteins cannot be due to formation or elongation of cilia; 3) substantial tubulin exchange takes place in fully-motile cilia; and 4) chaperone presence and association in steady-state cilia is independent of background ciliogenesis, tubulin synthesis, and tubulin assembly state.
Resumo:
To begin to understand mechanistic differences in endocytosis in neurons and nonneuronal cells, we have compared the biochemical properties of the ubiquitously expressed dynamin-II isoform with those of neuron-specific dynamin-I. Like dynamin-I, dynamin-II is specifically localized to and highly concentrated in coated pits on the plasma membrane and can assemble in vitro into rings and helical arrays. As expected, the two closely related isoforms share a similar mechanism for GTP hydrolysis: both are stimulated in vitro by self-assembly and by interaction with microtubules or the SH3 domain-containing protein, grb2. Deletion of the C-terminal proline/arginine-rich domain from either isoform abrogates self-assembly and assembly-dependent increases in GTP hydrolysis. However, dynamin-II exhibits a ∼threefold higher rate of intrinsic GTP hydrolysis and higher affinity for GTP than dynamin-I. Strikingly, the stimulated GTPase activity of dynamin-II can be >40-fold higher than dynamin-I, due principally to its greater propensity for self-assembly and the increased resistance of assembled dynamin-II to GTP-triggered disassembly. These results are consistent with the hypothesis that self-assembly is a major regulator of dynamin GTPase activity and that the intrinsic rate of GTP hydrolysis reflects a dynamic, GTP-dependent equilibrium of assembly and disassembly.
Resumo:
Initiation of fibronectin (FN) matrix assembly is dependent on specific interactions between FN and cell surface integrin receptors. Here, we show that de novo FN matrix assembly exhibits a slow phase during initiation of fibrillogenesis followed by a more rapid growth phase. Mn2+, which acts by enhancing integrin function, increased the rate of FN fibril growth, but only after the initial lag phase. The RGD cell-binding sequence in type III repeat 10 is an absolute requirement for initiation by α5β1 integrin. To investigate the role of the cell-binding synergy site in the adjacent repeat III9, a full-length recombinant FN containing a synergy mutation, FN(syn−), was tested for its ability to form fibrils. Mutation of this site drastically reduced FN assembly by CHOα5 cells. Only sparse short fibrils were formed even after prolonged incubation, indicating that FN(syn−) is defective in progression of the assembly process. These results show that the synergy site is essential for α5β1-mediated accumulation of a FN matrix. However, the incorporation of FN(syn−) into fibrils and the deoxycholate-insoluble matrix could be stimulated by Mn2+. Therefore, exogenous activation of integrin receptors can overcome the requirement for FN’s synergy site as well as modulate the rate of FN matrix formation.
Resumo:
The docking and fusion of cargo-containing vesicles with target membranes of eukaryotic cells is mediated by the interaction of SNARE proteins present on both vesicle and target membranes. In many cases, the target membrane SNARE, or t-SNARE, exists as a complex of syntaxin with a member of the SNAP-25 family of palmitoylated proteins. We have identified a novel human kinase SNAK (SNARE kinase) that specifically phosphorylates the nonneuronal t-SNARE SNAP-23 in vivo. Interestingly, only SNAP-23 that is not assembled into t-SNARE complexes is phosphorylated by SNAK, and phosphorylated SNAP-23 resides exclusively in the cytosol. Coexpression with SNAK significantly enhances the stability of unassembled SNAP-23, and as a consequence, the assembly of newly synthesized SNAP-23 with syntaxin is augmented. These data demonstrate that phosphorylation of SNAP-23 by SNAK enhances the kinetics of t-SNARE assembly in vivo.
Resumo:
The minichromosome maintenance (MCM) proteins MCM2–MCM7 are conserved eukaryotic replication factors that assemble in a heterohexameric complex. In fission yeast, these proteins are nuclear throughout the cell cycle. In studying the mechanism that regulates assembly of the MCM complex, we analyzed the cis and trans elements required for nuclear localization of a single subunit, Mcm2p. Mutation of any single mcm gene leads to redistribution of wild-type MCM subunits to the cytoplasm, and this redistribution depends on an active nuclear export system. We identified the nuclear localization signal sequences of Mcm2p and showed that these are required for nuclear targeting of other MCM subunits. In turn, Mcm2p must associate with other MCM proteins for its proper localization; nuclear localization of MCM proteins thus requires assembly of MCM proteins in a complex. We suggest that coupling complex assembly to nuclear targeting and retention ensures that only intact heterohexameric MCM complexes remain nuclear.
DNA Replication in Quiescent Cell Nuclei: Regulation by the Nuclear Envelope and Chromatin Structure
Resumo:
Quiescent nuclei from differentiated somatic cells can reacquire pluripotence, the capacity to replicate, and reinitiate a program of differentiation after transplantation into amphibian eggs. The replication of quiescent nuclei is recapitulated in extracts derived from activated Xenopus eggs; therefore, we have exploited this cell-free system to explore the mechanisms that regulate initiation of replication in nuclei from terminally differentiated Xenopus erythrocytes. We find that these nuclei lack many, if not all, pre-replication complex (pre-RC) proteins. Pre-RC proteins from the extract form a stable association with the chromatin of permeable nuclei, which replicate in this system, but not with the chromatin of intact nuclei, which do not replicate, even though these proteins cross an intact nuclear envelope. During extract incubation, the linker histones H1 and H10 are removed from erythrocyte chromatin by nucleoplasmin. We show that H1 removal facilitates the replication of permeable nuclei by increasing the frequency of initiation most likely by promoting the assembly of pre-RCs on chromatin. These data indicate that initiation in erythrocyte nuclei requires the acquisition of pre-RC proteins from egg extract and that pre-RC assembly requires the loss of nuclear envelope integrity and is facilitated by the removal of linker histone H1 from chromatin.
Resumo:
We have examined the distribution of RNA transcription and processing factors in the amphibian oocyte nucleus or germinal vesicle. RNA polymerase I (pol I), pol II, and pol III occur in the Cajal bodies (coiled bodies) along with various components required for transcription and processing of the three classes of nuclear transcripts: mRNA, rRNA, and pol III transcripts. Among these components are transcription factor IIF (TFIIF), TFIIS, splicing factors, the U7 small nuclear ribonucleoprotein particle, the stem–loop binding protein, SR proteins, cleavage and polyadenylation factors, small nucleolar RNAs, nucleolar proteins that are probably involved in pre-rRNA processing, and TFIIIA. Earlier studies and data presented here show that several of these components are first targeted to Cajal bodies when injected into the oocyte and only subsequently appear in the chromosomes or nucleoli, where transcription itself occurs. We suggest that pol I, pol II, and pol III transcription and processing components are preassembled in Cajal bodies before transport to the chromosomes and nucleoli. Most components of the pol II transcription and processing pathway that occur in Cajal bodies are also found in the many hundreds of B-snurposomes in the germinal vesicle. Electron microscopic images show that B-snurposomes consist primarily, if not exclusively, of 20- to 30-nm particles, which closely resemble the interchromatin granules described from sections of somatic nuclei. We suggest the name pol II transcriptosome for these particles to emphasize their content of factors involved in synthesis and processing of mRNA transcripts. We present a model in which pol I, pol II, and pol III transcriptosomes are assembled in the Cajal bodies before export to the nucleolus (pol I), to the B-snurposomes and eventually to the chromosomes (pol II), and directly to the chromosomes (pol III). The key feature of this model is the preassembly of the transcription and processing machinery into unitary particles. An analogy can be made between ribosomes and transcriptosomes, ribosomes being unitary particles involved in translation and transcriptosomes being unitary particles for transcription and processing of RNA.
Resumo:
Chronic lymphocytic leukemia (CLL) B cells characteristically exhibit low or undetectable surface B cell receptor (BCR) and diminished responses to BCR-mediated signaling. These features suggest that CLL cells may have sustained mutations affecting one or more of the BCR proteins required for receptor surface assembly and signal transduction. Loss of expression and mutations in the critical BCR protein B29 (Igβ, CD79b), are prevalent in CLL and could produce the hallmark features of these leukemic B cells. Because patient CLL cells are intractable to manipulation, we developed a model system to analyze B29 mutations. Jurkat T cells stably expressing μ, κ, and mb1 efficiently assembled a functional BCR when infected with recombinant vaccinia virus bearing wild-type B29. In contrast, a B29 CLL mutant protein truncated in the transmembrane domain did not associate with μ or mb1 at the cell surface. Another B29 CLL mutant lacking the C-terminal immunoreceptor tyrosine activation motif tyrosine and distal residues brought the receptor to the surface as well as wild-type B29 but showed significant impairment in anti-IgM-stimulated signaling events including mitogen-activated protein kinase activation. These findings demonstrate that B29 mutations previously identified in CLL patients can affect BCR-dependent signaling and may contribute to the unresponsive B cell phenotype in CLL. Finally, the features of the B29 mutations in CLL predict that they may be generated by somatic hypermutation.
Resumo:
At least 11 complementation groups (CGs) have been identified for the peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome, for which seven pathogenic genes have been elucidated. We have isolated a human PEX19 cDNA (HsPEX19) by functional complementation of peroxisome deficiency of a mutant Chinese hamster ovary cell line, ZP119, defective in import of both matrix and membrane proteins. This cDNA encodes a hydrophilic protein (Pex19p) comprising 299 amino acids, with a prenylation motif, CAAX box, at the C terminus. Farnesylated Pex19p is partly, if not all, anchored in the peroxisomal membrane, exposing its N-terminal part to the cytosol. A stable transformant of ZP119 with HsPEX19 was morphologically and biochemically restored for peroxisome biogenesis. HsPEX19 expression also restored peroxisomal protein import in fibroblasts from a patient (PBDJ-01) with Zellweger syndrome of CG-J. This patient (PBDJ-01) possessed a homozygous, inactivating mutation: a 1-base insertion, A764, in a codon for Met255, resulted in a frameshift, inducing a 24-aa sequence entirely distinct from normal Pex19p. These results demonstrate that PEX19 is the causative gene for CG-J PBD and suggest that the C-terminal part, including the CAAX homology box, is required for the biological function of Pex19p. Moreover, Pex19p is apparently involved at the initial stage in peroxisome membrane assembly, before the import of matrix protein.
Resumo:
Fibronectin (FN) forms the primitive fibrillar matrix in both embryos and healing wounds. To study the matrix in living cell cultures, we have constructed a cell line that secretes FN molecules chimeric with green fluorescent protein. These FN–green fluorescent protein molecules were assembled into a typical matrix that was easily visualized by fluorescence over periods of several hours. FN fibrils remained mostly straight, and they were seen to extend and contract to accommodate movements of the cells, indicating that they are elastic. When fibrils were broken or detached from cells, they contracted to less than one-fourth of their extended length, demonstrating that they are highly stretched in the living culture. Previous work from other laboratories has suggested that cryptic sites for FN assembly may be exposed by tension on FN. Our results show directly that FN matrix fibrils are not only under tension but are also highly stretched. This stretched state of FN is an obvious candidate for exposing the cryptic assembly sites.
Resumo:
Host Cell Factor-1 (HCF-1, C1) was first identified as a cellular target for the herpes simplex virus transcriptional activator VP16. Association between HCF and VP16 leads to the assembly of a multiprotein enhancer complex that stimulates viral immediate-early gene transcription. HCF-1 is expressed in all cells and is required for progression through G1 phase of the cell cycle. In addition to VP16, HCF-1 associates with a cellular bZIP protein known as LZIP (or Luman). Both LZIP and VP16 contain a four-amino acid HCF-binding motif, recognized by the N-terminal β-propeller domain of HCF-1. Herein, we show that the N-terminal 92 amino acids of LZIP contain a potent transcriptional activation domain composed of three elements: the HCF-binding motif and two LxxLL motifs. LxxLL motifs are found in a number of transcriptional coactivators and mediate protein–protein interactions, notably recognition of the nuclear hormone receptors. LZIP is an example of a sequence-specific DNA-binding protein that uses LxxLL motifs within its activation domain to stimulate transcription. The LxxLL motifs are not required for association with the HCF-1 β-propeller and instead interact with other regions in HCF-1 or recruit additional cofactors.
Resumo:
Transmembrane protein tyrosine phosphatases, such as CD45, can act as both positive and negative regulators of cellular signaling. CD45 positively modulates T cell receptor (TCR) signaling by constitutively priming p56lck through the dephosphorylation of the C-terminal negative regulatory phosphotyrosine site. However, CD45 can also exert negative effects on cellular processes, including events triggered by integrin-mediated adhesion. To better understand these opposing actions of tyrosine phosphatases, the subcellular compartmentalization of CD45 was imaged by using laser scanning confocal microscopy during functional TCR signaling of live T lymphocytes. On antigen engagement, CD45 was first excluded from the central region of the interface between the T cell and the antigen-presenting surface where CD45 would inhibit integrin activation. Subsequently, CD45 was recruited back to the center of the contact to an area adjacent to the site of sustained TCR engagement. Thus, CD45 is well positioned within a supramolecular assembly in the vicinity of the engaged TCR, where CD45 would be able to maintain src-kinase activity for the duration of TCR engagement.
Resumo:
The assembly of a pre-B cell receptor (pre-BCR) composed of an Ig μ heavy chain (μH-chain), the surrogate light (SL) chain, and the Igα/β dimer is critical for late pro-B cells to advance to the pre-B cell stage. By using a transgenic mouse model, in which μH-chain synthesis is solely driven by a tetracycline-controlled transactivator, we show that de novo synthesis of μH-chain in transgenic pro-B cells not only induces differentiation but also proliferation. This positive effect of μH-chain synthesis on proliferation requires the presence of SL chain and costimulatory signals provided by stromal cells or IL-7. We conclude that pre-BCR signaling induces clonal expansion of early pre-B cells.