84 resultados para cell level
Resumo:
Phosphatidylcholine and phosphatidylethanolamine are the most abundant phospholipids in eukaryotic cells and thus have major roles in the formation and maintenance of vesicular membranes. In yeast, diacylglycerol accepts a phosphocholine moiety through a CPT1-derived cholinephosphotransferase activity to directly synthesize phosphatidylcholine. EPT1-derived activity can transfer either phosphocholine or phosphoethanolamine to diacylglcyerol in vitro, but is currently believed to primarily synthesize phosphatidylethanolamine in vivo. In this study we report that CPT1- and EPT1-derived cholinephosphotransferase activities can significantly overlap in vivo such that EPT1 can contribute to 60% of net phosphatidylcholine synthesis via the Kennedy pathway. Alterations in the level of diacylglycerol consumption through alterations in phosphatidylcholine synthesis directly correlated with the level of SEC14-dependent invertase secretion and affected cell viability. Administration of synthetic di8:0 diacylglycerol resulted in a partial rescue of cells from SEC14-mediated cell death. The addition of di8:0 diacylglycerol increased di8:0 diacylglycerol levels 20–40-fold over endogenous long-chain diacylglycerol levels. Di8:0 diacylglcyerol did not alter endogenous phospholipid metabolic pathways, nor was it converted to di8:0 phosphatidic acid.
Resumo:
The acquisition of genotoxin-induced mutations in the mammalian germline is detrimental to the stable transfer of genomic information. In somatic cells, nucleotide excision repair (NER) is a major pathway to counteract the mutagenic effects of DNA damage. Two NER subpathways have been identified, global genome repair (GGR) and transcription-coupled repair (TCR). In contrast to somatic cells, little is known regarding the expression of these pathways in germ cells. To address this basic question, we have studied NER in rat spermatogenic cells in crude cell suspension, in enriched cell stages and within seminiferous tubules after exposure to UV or N-acetoxy-2-acetylaminofluorene. Surprisingly, repair in spermatogenic cells was inefficient in the genome overall and in transcriptionally active genes indicating non-functional GGR and TCR. In contrast, extracts from early/mid pachytene cells displayed dual incision activity in vitro as high as extracts from somatic cells, demonstrating that the proteins involved in incision are present and functional in premeiotic cells. However, incision activities of extracts from diplotene cells and round spermatids were low, indicating a stage-dependent expression of incision activity. We hypothesize that sequestering of NER proteins by mispaired regions in DNA involved in synapsis and recombination may underlie the lack of NER activity in premeiotic cells.
Resumo:
Edman degradation remains the primary method for determining the sequence of proteins. In this study, accelerator mass spectrometry was used to determine the N-terminal sequence of glutathione S-transferase at the attomole level with zeptomole precision using a tracer of 14C. The transgenic transferase was labeled by growing transformed Escherichia coli on [14C]glucose and purified by microaffinity chromatography. An internal standard of peptides on a solid phase synthesized to release approximately equal amounts of all known amino acids with each cycle were found to increase yield of gas phase sequencing reactions and subsequent semimicrobore HPLC as did a lactoglobulin carrier. This method is applicable to the sequencing of proteins from cell culture and illustrates a path to more general methods for determining N-terminal sequences with high sensitivity.
Resumo:
Pigmented naphthoquinone derivatives of shikonin are produced at specific times and in specific cells of Lithospermum erythrorhizon roots. Normal pigment development is limited to root hairs and root border cells in hairy roots grown on “noninducing” medium, whereas induction of additional pigment production by abiotic (CuSO4) or biotic (fungal elicitor) factors increases the amount of total pigment, changes the ratios of derivatives produced, and initiates production of pigment de novo in epidermal cells. When the biological activity of these compounds was tested against soil-borne bacteria and fungi, a wide range of sensitivity was recorded. Acetyl-shikonin and β-hydroxyisovaleryl-shikonin, the two most abundant derivatives in both Agrobacterium rhizogenes-transformed “hairy-root” cultures and greenhouse-grown plant roots, were the most biologically active of the seven compounds tested. Hyphae of the pathogenic fungi Rhizoctonia solani, Pythium aphanidermatum, and Nectria hematococca induced localized pigment production upon contact with the roots. Challenge by R. solani crude elicitor increased shikonin derivative production 30-fold. We have studied the regulation of this suite of related, differentially produced, differentially active compounds to understand their role(s) in plant defense at the cellular level in the rhizosphere.
Resumo:
The semidominant mutation Liguleless3-O (Lg3-O) causes a blade-to-sheath transformation at the midrib region of the maize (Zea mays L.) leaf. We isolated a full-length lg3 cDNA containing a knotted1-like family homeobox. Six Lg3-O partial revertant alleles caused by insertion of a Mutator (Mu) transposon and two deletion derivatives were isolated and used to verify that our knotted1-like cDNA corresponds to the LG3 message. In wild-type plants the LG3 mRNA is expressed in apical regions but is not expressed in leaves. In mutant plants harboring any of three dominant lg3 alleles (Lg3-O, -Mlg, and -347), LG3 mRNA is expressed in leaf sheath tissue, indicating that the Lg3 phenotype is due to ectopic expression of the gene. The Lg3-O revertant alleles represent two classes of Lg3 phenotypes that correlate well with the level of ectopic Lg3 expression. High levels of ectopic LG3 mRNA expression results in a severe Lg3 phenotype, whereas weak ectopic Lg3 expression results in a mild Lg3 phenotype. We propose that ectopic Lg3 expression early in leaf development causes the blade-to-sheath transformation, but the level of expression determines the extent of the transformation.
Resumo:
We discovered that a shift between the state of tumorigenicity and dormancy in human carcinoma (HEp3) is attained through regulation of the balance between two classical mitogen-activated protein kinase (MAPK)-signaling pathways, the mitogenic extracellular regulated kinase (ERK) and the apoptotic/growth suppressive stress-activated protein kinase 2 (p38MAPK), and that urokinase plasminogen activator receptor (uPAR) is an important regulator of these events. This is a novel function for uPAR whereby, when expressed at high level, it enters into frequent, activating interactions with the α5β1-integrin, which facilitates the formation of insoluble fibronectin (FN) fibrils. Activation of α5β1-integrin by uPAR generates persistently high level of active ERK necessary for tumor growth in vivo. Our results show that ERK activation is generated through a convergence of two pathways: a positive signal through uPAR-activated α5β1, which activates ERK, and a signal generated by the presence of FN fibrils that suppresses p38 activity. When fibrils are removed or their assembly is blocked, p38 activity increases. Low uPAR derivatives of HEp3 cells, which are growth arrested (dormant) in vivo, have a high p38/ERK activity ratio, but in spite of a similar level of α5β1-integrin, they do not assemble FN fibrils. However, when p38 activity is inhibited by pharmacological (SB203580) or genetic (dominant negative-p38) approaches, their ERK becomes activated, uPAR is overexpressed, α5β1-integrins are activated, and dormancy is interrupted. Restoration of these properties in dormant cells can be mimicked by a direct re-expression of uPAR through transfection with a uPAR-coding plasmid. We conclude that overexpression of uPAR and its interaction with the integrin are responsible for generating two feedback loops; one increases the ERK activity that feeds back by increasing the expression of uPAR. The second loop, through the presence of FN fibrils, suppresses p38 activity, further increasing ERK activity. Together these results indicate that uPAR and its interaction with the integrin should be considered important targets for induction of tumor dormancy.
Resumo:
LLCPK-1 cells were transfected with a green fluorescent protein (GFP)-α tubulin construct and a cell line permanently expressing GFP-α tubulin was established (LLCPK-1α). The mitotic index and doubling time for LLCPK-1α were not significantly different from parental cells. Quantitative immunoblotting showed that 17% of the tubulin in LLCPK-1α cells was GFP-tubulin; the level of unlabeled tubulin was reduced to 82% of that in parental cells. The parameters of microtubule dynamic instability were compared for interphase LLCPK-1α and parental cells injected with rhodamine-labeled tubulin. Dynamic instability was very similar in the two cases, demonstrating that LLCPK-1α cells are a useful tool for analysis of microtubule dynamics throughout the cell cycle. Comparison of astral microtubule behavior in mitosis with microtubule behavior in interphase demonstrated that the frequency of catastrophe increased twofold and that the frequency of rescue decreased nearly fourfold in mitotic compared with interphase cells. The percentage of time that microtubules spent in an attenuated state, or pause, was also dramatically reduced, from 73.5% in interphase to 11.4% in mitosis. The rates of microtubule elongation and rapid shortening were not changed; overall dynamicity increased 3.6-fold in mitosis. Microtubule release from the centrosome and a subset of differentially stable astral microtubules were also observed. The results provide the first quantitative measurements of mitotic microtubule dynamics in mammalian cells.
Resumo:
Tissue remodeling often reflects alterations in local mechanical conditions and manifests as an integrated response among the different cell types that share, and thus cooperatively manage, an extracellular matrix. Here we examine how two different cell types, one that undergoes the stress and the other that primarily remodels the matrix, might communicate a mechanical stress by using airway cells as a representative in vitro system. Normal stress is imposed on bronchial epithelial cells in the presence of unstimulated lung fibroblasts. We show that (i) mechanical stress can be communicated from stressed to unstressed cells to elicit a remodeling response, and (ii) the integrated response of two cell types to mechanical stress mimics key features of airway remodeling seen in asthma: namely, an increase in production of fibronectin, collagen types III and V, and matrix metalloproteinase type 9 (MMP-9) (relative to tissue inhibitor of metalloproteinase-1, TIMP-1). These observations provide a paradigm to use in understanding the management of mechanical forces on the tissue level.
Resumo:
BIMD of Aspergillus nidulans belongs to a highly conserved protein family implicated, in filamentous fungi, in sister-chromatid cohesion and DNA repair. We show here that BIMD is chromosome associated at all stages, except from late prophase through anaphase, during mitosis and meiosis, and is involved in several aspects of both programs. First, bimD+ function must be executed during S through M. Second, in bimD6 germlings, mitotic nuclear divisions and overall cellular program occur more rapidly than in wild type. Thus, BIMD, an abundant chromosomal protein, is a negative regulator of normal cell cycle progression. Third, bimD6 reduces the level of mitotic interhomolog recombination but does not alter the ratio between crossover and noncrossover outcomes. Moreover, bimD6 is normal for intrachromosomal recombination. Therefore, BIMD is probably not involved in the enzymology of recombinational repair per se. Finally, during meiosis, staining of the Sordaria ortholog Spo76p delineates robust chromosomal axes, whereas BIMD stains all chromatin. SPO76 and bimD are functional homologs with respect to their roles in mitotic chromosome metabolism but not in meiosis. We propose that BIMD exerts its diverse influences on cell cycle progression as well as chromosome morphogenesis and recombination by modulating chromosome structure.
Resumo:
Agents that increase intracellular cAMP inhibit the activation and function of T cells and can lead to cell death. Recently, it has been postulated that cAMP inhibits T cell function in large part by acting as a brake on the T cell receptor and costimulatory receptor pathways. Therefore, for full activation of the T cell to occur, this inhibitory influence must be removed. One likely mechanism for accomplishing this is by up-regulation and/or activation of specific cyclic nucleotide phosphodiesterases (PDEs), and such a mechanism for one phosphodiesterase, PDE7A1, has been reported. In this paper, we extend this mechanism to another isozyme variant of the same PDE family, PDE7A3. We also report the full-length sequence of human PDE8A1 and show that it also is induced in response to a combination of T cell receptor and costimulatory receptor pathway activation. However, the time course for induction of PDE8A1 is slower than that of PDE7A1. The basal level measured and, therefore, the apparent fold induction of PDE7A1 mRNA and protein depend in large part on the method of isolation of the T cells. On the other hand, regardless of the isolation method, the basal levels of PDE7A3 and PDE8A1 are very low and fold activation is much higher. Constitutively expressed PDE8A1 and PDE7A3 also have been isolated from a human T cell line, Hut78.
Resumo:
Fiber cell initiation in the epidermal cells of cotton (Gossypium hirsutum L.) ovules represents a unique example of trichome development in higher plants. Little is known about the molecular and metabolic mechanisms controlling this process. Here we report a comparative analysis of a fiberless seed (fls) mutant (lacking fibers) and a normal (FLS) mutant to better understand the initial cytological events in fiber development and to analyze the metabolic changes that are associated with the loss of a major sink for sucrose during cellulose biosynthesis in the mutant seeds. On the day of anthesis (0 DAA), the mutant ovular epidermal cells lacked the typical bud-like projections that are seen in FLS ovules and are required for commitment to the fiber development pathway. Cell-specific gene expression analyses at 0 DAA showed that sucrose synthase (SuSy) RNA and protein were undetectable in fls ovules but were in abundant, steady-state levels in initiating fiber cells of the FLS ovules. Tissue-level analyses of developing seeds 15 to 35 DAA revealed an altered temporal pattern of SuSy expression in the mutant relative to the normal genotype. Whether the altered programming of SuSy expression is the cause or the result of the mutation is unknown. The developing seeds of the fls mutant have also shown several correlated changes that represent altered carbon partitioning in seed coats and cotyledons as compared with the FLS genotype.
Resumo:
In wheat (Triticum aestivum) seedlings subjected to a mild water stress (water potential of −0.3 MPa), the leaf-elongation rate was reduced by one-half and the mitotic activity of mesophyll cells was reduced to 42% of well-watered controls within 1 d. There was also a reduction in the length of the zone of mesophyll cell division to within 4 mm from the base compared with 8 mm in control leaves. However, the period of division continued longer in the stressed than in the control leaves, and the final cell number in the stressed leaves reached 85% of controls. Cyclin-dependent protein kinase enzymes that are required in vivo for DNA replication and mitosis were recovered from the meristematic zone of leaves by affinity for p13suc1. Water stress caused a reduction in H1 histone kinase activity to one-half of the control level, although amounts of the enzyme were unaffected. Reduced activity was correlated with an increased proportion of the 34-kD Cdc2-like kinase (an enzyme sharing with the Cdc2 protein of other eukaryotes the same size, antigenic sites, affinity for p13suc1, and H1 histone kinase catalytic activity) deactivated by tyrosine phosphorylation. Deactivation to 50% occurred within 3 h of stress imposition in cells at the base of the meristematic zone and was therefore too fast to be explained by a reduction in the rate at which cells reached mitosis because of slowing of growth; rather, stress must have acted more immediately on the enzyme. The operation of controls slowing the exit from the G1 and G2 phases is discussed. We suggest that a water-stress signal acts on Cdc2 kinase by increasing phosphorylation of tyrosine, causing a shift to the inhibited form and slowing cell production.
Resumo:
The deleterious effect of superoxide radicals on cell growth and survival is predominately caused by rapid oxidation of labile [Fe-S] clusters in proteins. Oxidation of these clusters releases Fe(II) ions, which participate in Fenton chemistry that damages DNA. Here it is shown that elevated levels of the YggX protein increase the resistance of Salmonella enterica to superoxide stress, reverse enzymatic defects attributed to oxidized [Fe-S] clusters, and decrease the spontaneous mutation frequency. The data are consistent with a model in which YggX protects protein [Fe-S] clusters from oxidation.
Resumo:
We expressed the 52-kDa integral membrane domain (B3mem) of the human erythrocyte anion transporter (band 3; AE1) in a protease-deficient strain of the yeast Saccharomyces cerevisiae under the control of the inducible GAL10-CYC1 promoter. Immunoblots of total protein from transformed yeast cells confirmed that the B3mem polypeptide was overexpressed shortly after induction with galactose. Cell surface expression of the functional anion transporter was detected by using a simple transport assay to measure stilbene disulfonate-inhibitable chloride influx into intact yeast cells. The B3mem polypeptide was recycled and degraded by the cells with a half-life of approximately 1-3 hr, which led to a steady-state level of expression in exponentially growing cultures. Our data suggest that 5-10% of total B3mem is functionally active at the cell surface at any one time and that overexpression of this anion transport protein does not interfere with cell growth or survival. This is one of only a few reports of the functional expression of a plasma membrane transport protein in the plasma membrane of yeast cells and to our knowledge is the first report of red cell band 3-mediated anion transport at the plasma membrane of cDNA-transformed cells. The cell surface expression system we describe will provide a simple means for future study of the functional properties of band 3 by using site-directed mutagenesis.
Resumo:
3-Hydroxykynurenine (3-HK) is a tryptophan metabolite whose level in the brain is markedly elevated under several pathological conditions, including Huntington disease and human immunodeficiency virus infection. Here we demonstrate that micromolar concentrations (1-100 microM) of 3-HK cause cell death in primary neuronal cultures prepared from rat striatum. The neurotoxicity of 3-HK was blocked by catalase and desferrioxamine but not by superoxide dismutase, indicating that the generation of hydrogen peroxide and hydroxyl radical is involved in the toxicity. Measurement of peroxide levels revealed that 3-HK caused intracellular accumulation of peroxide, which was largely attenuated by application of catalase. The peroxide accumulation and cell death caused by 1-10 microM 3-HK were also blocked by pretreatment with allopurinol or oxypurinol, suggesting that endogenous xanthine oxidase activity is involved in exacerbation of 3-HK neurotoxicity. Furthermore, NADPH diaphorase-containing neurons were spared from toxicity of these concentrations of 3-HK, a finding reminiscent of the pathological characteristics of several neurodegenerative disorders such as Huntington disease. These results suggest that 3-HK at pathologically relevant concentrations renders neuronal cells subject to oxidative stress leading to cell death, and therefore that this endogenous compound should be regarded as an important factor in pathogenesis of neurodegenerative disorders.