55 resultados para cannabinoid drugs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immunosuppressive drugs cyclosporin A and FK506 interfere with the inducible transcription of cytokine genes in T cells and in other immune cells, in part by preventing the activation of NF-AT (nuclear factor of activated T cells). We show that transcription factor NFAT1 in T cells is rapidly dephosphorylated on stimulation, that dephosphorylation occurs before translocation of NFAT1 into the cell nucleus, and that dephosphorylation increases the affinity of NFAT1 for its specific sites in DNA. Cyclosporin A prevents the dephosphorylation and the nuclear translocation of NFAT1 in T cells, B cells, macrophages, and mast cells, delineating at least one mechanism that contributes to the profound immunosuppressive effects of this compound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a reverse transcription-coupled PCR, we demonstrated that both brain and spleen type cannabinoid receptor (CB1-R and CB2-R, respectively) mRNAs are expressed in the preimplantation mouse embryo. The CB1-R mRNA expression was coincident with the activation of the embryonic genome late in the two-cell stage, whereas the CB2-R mRNA was present from the one-cell through the blastocyst stages. The major psychoactive component of marijuana (-)-delta-9-tetrahydrocannabinol [(-)-THC] inhibited forskolin-stimulated cAMP generation in the blastocyst, and this inhibition was prevented by pertussis toxin. However, the inactive cannabinoid cannabidiol (CBD) failed to influence this response. These results suggest that cannabinoid receptors in the embryo are coupled to inhibitory guanine nucleotide binding proteins. Further, the oviduct and uterus exhibited the enzymatic capacity to synthesize the putative endogenous cannabinoid ligand arachidonylethanolamide (anandamide). Synthetic and natural cannabinoid agonists [WIN 55,212-2, CP 55,940, (-)-THC, and anandamide], but not CBD or arachidonic acid, arrested the development of two-cell embryos primarily between the four-cell and eight-cell stages in vitro in a dose-dependent manner. Anandamide also interfered with the development of eight-cell embryos to blastocysts in culture. The autoradiographic studies readily detected binding of [3H]anandamide in embryos at all stages of development. Positive signals were present in one-cell embryos and all blastomeres of two-cell through four-cell embryos. However, most of the binding sites in eight-cell embryos and morulae were present in the outer cells. In the blastocyst, these signals were primarily localized in the mural trophectoderm with low levels of signals in the polar trophectoderm, while little or no signals were noted in inner cell mass cells.These results establish that the preimplantation mouse embryo is a target for cannabinoid ligands. Consequently, many of the adverse effects of cannabinoids observed during pregnancy could be mediated via these cannabinoid receptors. Although the physiological significance of the cannabinoid ligand-receptor signaling in normal preimplantation embryo development is not yet clear, the regulation of embryonic cAMP and/or Ca2+ levels via this signaling pathway may be important for normal embryonic development and/or implantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA-damaging agents induce accumulation of the tumor suppressor and G1 checkpoint protein p53, leading cells to either growth arrest in G1 or apoptosis (programmed cell death). The p53-dependent G1 arrest involves induction of p21 (also called WAF1/CIP1/SDI1), which prevents cyclin kinase-mediated phosphorylation of retinoblastoma protein (RB). Recent studies suggest a p53-independent G1 checkpoint as well; however, little is known about its molecular mechanisms. We report that induction of a protein-serine/threonine phosphatase activity by DNA damage signals is at least one of the mechanisms responsible for p53-independent, RB-mediated G1 arrest and consequent apoptosis. When two p53-null human leukemic cell lines (HL-60 and U-937) were treated with a variety of anticancer agents, RB became hypophosphorylated, accompanied with G1 arrest. This was followed immediately (in less than 30 min) by apoptosis, as determined by the accumulation of pre-G1 apoptotic cells and the internucleosomal fragmentation of DNA. Addition of calyculin A or okadaic acid (specific serine/threonine phosphatase inhibitors) or zinc chloride (apoptosis inhibitor) prevented the G1 arrest- and apoptosis-specific RB dephosphorylation. The levels of cyclin E- and cyclin A-associated kinase activities remained high during RB dephosphorylation, supporting the involvement of a chemotherapy-induced serine/threonine phosphatase(s) rather than p21. Furthermore, the induced phosphatase activity coimmunoprecipitated with the hyperphosphorylated RB and was active in a cell-free system that reproduced the growth arrest- and apoptosis-specific RB dephosphorylation, which was inhibitable by calyculin A but not zinc. We propose that the RB phosphatase(s) might be one of the p53-independent G1 checkpoint regulators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide synthesized by inducible nitric oxide synthase (iNOS) has been implicated as a mediator of inflammation in rheumatic and autoimmune diseases. We report that exposure of lipopolysaccharide-stimulated murine macrophages to therapeutic concentrations of aspirin (IC50 = 3 mM) and hydrocortisone (IC50 = 5 microM) inhibited the expression of iNOS and production of nitrite. In contrast, sodium salicylate (1-3 mM), indomethacin (5-20 microM), and acetaminophen (60-120 microM) had no significant effect on the production of nitrite at pharmacological concentrations. At suprapharmacological concentrations, sodium salicylate (IC50 = 20 mM) significantly inhibited nitrite production. Immunoblot analysis of iNOS expression in the presence of aspirin showed inhibition of iNOS expression (IC50 = 3 mM). Sodium salicylate variably inhibited iNOS expression (0-35%), whereas indomethacin had no effect. Furthermore, there was no significant effect of these nonsteroidal anti-inflammatory drugs on iNOS mRNA expression at pharmacological concentrations. The effect of aspirin was not due to inhibition of cyclooxygenase 2 because both aspirin and indomethacin inhibited prostaglandin E2 synthesis by > 75%. Aspirin and N-acetylimidazole (an effective acetylating agent), but not sodium salicylate or indomethacin, also directly interfered with the catalytic activity of iNOS in cell-free extracts. These studies indicate that the inhibition of iNOS expression and function represents another mechanism of action for aspirin, if not for all aspirin-like drugs. The effects are exerted at the level of translational/posttranslational modification and directly on the catalytic activity of iNOS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programmed cell death (apoptosis) is an intrinsic part of organismal development and aging. Here we report that many nonsteroidal antiinflammatory drugs (NSAIDs) cause apoptosis when applied to v-src-transformed chicken embryo fibroblasts (CEFs). Cell death was characterized by morphological changes, the induction of tissue transglutaminase, and autodigestion of DNA. Dexamethasone, a repressor of cyclooxygenase (COX) 2, neither induced apoptosis nor altered the NSAID effect. Prostaglandin E2, the primary eicosanoid made by CEFs, also failed to inhibit apoptosis. Expression of the protooncogene bcl-2 is very low in CEFs and is not altered by NSAID treatment. In contrast, p20, a protein that may protect against apoptosis when fibroblasts enter G0 phase, was strongly repressed. The NSAID concentrations used here transiently inhibit COXs. Nevertheless, COX-1 and COX-2 mRNAs and COX-2 protein were induced. In some cell types, then, chronic NSAID treatment may lead to increased, rather than decreased, COX activity and, thus, exacerbate prostaglandin-mediated inflammatory effects. The COX-2 transcript is a partially spliced and nonfunctional form previously described. Thus, these findings suggest that COXs and their products play key roles in preventing apoptosis in CEFs and perhaps other cell types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activation of heat shock genes by diverse forms of environmental and physiological stress has been implicated in a number of human diseases, including ischemic damage, reperfusion injury, infection, neurodegeneration, and inflammation. The enhanced levels of heat shock proteins and molecular chaperones have broad cytoprotective effects against acute lethal exposures to stress. Here, we show that the potent antiinflammatory drug indomethacin activates the DNA-binding activity of human heat shock transcription factor 1 (HSF1). Perhaps relevant to its pharmacological use, indomethacin pretreatment lowers the temperature threshold of HSF1 activation, such that a complete heat shock response can be attained at temperatures that are by themselves insufficient. The synergistic effect of indomethacin and elevated temperature is biologically relevant and results in the protection of cells against exposure to cytotoxic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using RNA (Northern) blot hybridization and reverse transcription-PCR, we demonstrate that the brain-type cannabinoid receptor (CB1-R) mRNA, but not the spleen-type cannabinoid receptor (CB2-R) mRNA, is expressed in the mouse uterus and that this organ has the capacity to synthesize the putative endogenous cannabinoid ligand, anandamide (arachidonylethanolamide). The psychoactive cannabinoid component of marijuana--delta 9-tetrahydrocannabinol (THC)--or anandamide, but not the inactive and nonpsychoactive cannabidiol (CBD), inhibited forskolin-stimulated cyclic AMP formation in the mouse uterus, which was prevented by pertussis toxin pretreatment. These results suggest that uterine CB1-R is coupled to inhibitory guanine nucleotide-binding protein and is biologically active. Autoradiographic studies identified ligand binding sites ([3H]anandamide) in the uterine epithelium and stromal cells, suggesting that these cells are perhaps the targets for cannabinoid action. Scatchard analysis of the binding of [3H]WIN 55212-2, another cannabinoid receptor ligand, showed a single class of high-affinity binding sites in the endometrium with an apparent Kd of 2.4 nM and Bmax of 5.4 x 10(9) molecules per mg of protein. The gene encoding lactoferrin is an estrogen-responsive gene in the mouse uterus that was rapidly and transiently up-regulated by THC, but not by CBD, in ovariectomized mice in the absence of ovarian steroids. This effect, unlike that of 17 beta-estradiol (E2), was not influenced by a pure antiestrogen, ICI 182780, suggesting that the THC-induced uterine lactoferrin gene expression does not involve estrogen receptors. We propose that the uterus is a new target for cannabinoid ligand-receptor signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of drugs is often limited by their insufficient selectivity. I propose designs of therapeutic agents that address this problem. The key feature of these reagents, termed comtoxins (codominance-mediated toxins), is their ability to utilize codominance, a property characteristic of many signals in proteins, including degradation signals (degrons) and nuclear localization signals. A comtoxin designed to kill cells that express intracellular proteins P1 and P2 but to spare cells that lack P1 and/or P2 is a multidomain fusion containing a cytotoxic domain and two degrons placed within or near two domains P1* and P2* that bind, respectively, to P1 and P2. In a cell containing both P1 and P2, these proteins would bind to the P1* and P2* domains of the comtoxin and sterically mask the nearby (appropriately positioned) degrons, resulting in a long-lived and therefore toxic drug. By contrast, in a cell lacking P1 and/or P2, at least one of the comtoxin's degrons would be active (unobstructed), yielding a short-lived and therefore nontoxic drug. A comtoxin containing both a degron and a nuclear localization signal can be designed to kill exclusively cells that contain P1 but lack P2. Analogous strategies yield comtoxins sensitive to the presence (or absence) of more than two proteins in a cell. Also considered is a class of comtoxins in which a toxic domain is split by a flexible insert containing binding sites for the target proteins. The potentially unlimited, combinatorial selectivity of comtoxins may help solve the problem of side effects that bedevils present-day therapies, for even nonselective delivery of a comtoxin would not affect cells whose protein "signatures" differ from the targeted one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acyclic nucleoside phosphonate analog 9-(2-phosphonylmethoxyethyl)adenine (PMEA) was recently found to be effective as an inhibitor of visna virus replication and cytopathic effect in sheep choroid plexus cultures. To study whether PMEA also affects visna virus infection in sheep, two groups of four lambs each were inoculated intracerebrally with 10(6.3) TCID50 of visna virus strain KV1772 and treated subcutaneously three times a week with PMEA at 10 and 25 mg/kg, respectively. The treatment was begun on the day of virus inoculation and continued for 6 weeks. A group of four lambs were infected in the same way but were not treated. The lambs were bled weekly or biweekly and the leukocytes were tested for virus. At 7 weeks after infection, the animals were sacrificed, and cerebrospinal fluid (CSF) and samples of tissue from various areas of the brain and from lungs, spleen, and lymph nodes were collected for isolation of virus and for histopathologic examination. The PMEA treatment had a striking effect on visna virus infection, which was similar for both doses of the drug. Thus, the frequency of virus isolations was much lower in PMEA-treated than in untreated lambs. The difference was particularly pronounced in the blood, CSF, and brain tissue. Furthermore, CSF cell counts were much lower and inflammatory lesions in the brain were much less severe in the treated lambs than in the untreated controls. The results indicate that PMEA inhibits the propagation and spread of visna virus in infected lambs and prevents brain lesions, at least during early infection. The drug caused no noticeable side effects during the 6 weeks of treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mast cells are multifunctional bone marrow-derived cells found in mucosal and connective tissues and in the nervous system, where they play important roles in tissue inflammation and in neuroimmune interactions. Very little is known about endogenous molecules and mechanisms capable of modulating mast cell activation. Palmitoylethanolamide, found in peripheral tissues, has been proposed to behave as a local autacoid capable of downregulating mast cell activation and inflammation. A cognate N-acylamide, anandamide, the ethanolamide of arachidonic acid, occurs in brain and is a candidate endogenous agonist for the central cannabinoid receptor (CB1). As a second cannabinoid receptor (CB2) has been found in peripheral tissues, the possible presence of CB2 receptors on mast cells and their interaction with N-acylamides was investigated. Here we report that mast cells express both the gene and a functional CB2 receptor protein with negative regulatory effects on mast cell activation. Although both palmitoylethanolamide and anandamide bind to the CB2 receptor, only the former downmodulates mast cell activation in vitro. Further, the functional effect of palmitoylethanolamide, as well as that of the active cannabinoids, was efficiently antagonized by anandamide. The results suggest that (i) peripheral cannabinoid CB2 receptors control, upon agonist binding, mast cell activation and therefore inflammation; (ii) palmitoylethanolamide, unlike anandamide, behaves as an endogenous agonist for the CB2 receptor on mast cells; (iii) modulatory activities on mast cells exerted by the naturally occurring molecule strengthen a proposed autacoid local inflammation antagonism (ALIA) mechanism; and (iv) palmitoylethanolamide and its derivatives may provide antiinflammatory therapeutic strategies specifically targeted to mast cells ("ALIAmides").