63 resultados para brain cell karyotype
Resumo:
The characteristic features of a brain with Alzheimer disease (AD) include the presence of neuritic plaques composed of amyloid beta-protein (Abeta) and reductions in the levels of cholinergic markers. Neurotoxic responses to Abeta have been reported in vivo and in vitro, suggesting that the cholinergic deficit in AD brain may be secondary to the degeneration of cholinergic neurons caused by Abeta. However, it remains to be determined if Abeta contributes to the cholinergic deficit in AD brain by nontoxic effects. We examined the effects of synthetic Abeta peptides on the cholinergic properties of a mouse cell line, SN56, derived from basal forebrain cholinergic neurons. Abeta 1-42 and Abeta 1-28 reduced the acetylcholine (AcCho) content of the cells in a concentration-dependent fashion, whereas Abeta 1-16 was inactive. Maximal reductions of 43% and 33% were observed after a 48-h treatment with 100 nM of Abeta 1-42 and 50 pM of Abeta 1-28, respectively. Neither Abeta 1-28 nor Abeta 1-42 at a concentration of 100 nM and a treatment period of 2 weeks was toxic to the cells. Treatment of the cells with Abeta 25-28 (48 h; 100 nM) significantly decreased AcCho levels, suggesting that the sequence GSNK (aa 25-28) is responsible for the AcCho-reducing effect of Abeta. The reductions in AcCho levels caused by Abeta 1-42 and Abeta 1-28 were accompanied by proportional decreases in choline acetyltransferase activity. In contrast, acetylcholinesterase activity was unaltered, indicating that Abeta specifically reduces the synthesis of AcCho in SN56 cells. The reductions in AcCho content caused by Abeta 1-42 could be prevented by a cotreatment with all-trans-retinoic acid (10 nM), a compound previously shown to increase choline acetyltransferase mRNA expression in SN56 cells. These results demonstrate a nontoxic, suppressive effect of Abeta on AcCho synthesis, an action that may contribute to the cholinergic deficit in AD brain.
Resumo:
We describe molecular and clinical findings in an immunocompetent patient with an oligoastrocytoma and the concomitant presence of the human papovavirus, JC virus (JCV), which is the etiologic agent of the subacute, debilitating demyelinating disease, progressive multifocal leukoencephalopathy. Histologic review revealed a glial neoplasm consisting primarily of a moderately cellular oligodendroglioma with distinct areas of a fibrillary astrocytoma. Immunohistochemical analysis revealed nuclear staining of tumor cells with antibodies against the viral oncoprotein [tumor antigen (T antigen)], the proliferation marker (Ki67), and the cellular proliferation regulator (p53). Using primers specific to the JCV control region, PCR yielded amplified DNA that was identical to the control region of the Mad-4 strain of the virus. PCR analysis demonstrated the presence of the genome for the viral oncoprotein, T antigen, and results from primer extension studies revealed synthesis of the viral early RNA for T antigen in the tumor tissues. The presence of viral T antigen in the tumor tissue was further demonstrated by immunoblot assay. To our knowledge, this is the first report of the presence of JCV DNA, RNA, and T antigen in tissue in which viral T antigen is localized to tumor cell nuclei and suggests the possible association of JCV with some glial neoplasms.
Resumo:
Antioxidants may play an important role in preventing free radical damage associated with aging by interfering directly in the generation of radicals or by scavenging them. We investigated the effects of a high vitamin E and/or a high beta-carotene diet on aging of the anion transporter, band 3, in lymphocytes and brain. The band 3 proteins function as anion transporters, acid base regulators, C02 transporters, and structural proteins that provide a framework for membrane lipids and that link the plasma membrane to the cytoskeleton. Senescent cell antigen (SCA), which terminates the life of cells, is a degradation product of band 3. This study was conducted as a double-blind study in which eight groups of middle-aged or old mice received either high levels of beta-carotene and/or vitamin E or standard levels of these supplements in their diets. Anion transport kinetic assays were performed on isolated splenic lymphocytes. Immunoreactivity of an antibody that recognizes aging changes in old band 3 preceding generation of SCA was used to quantitate aged band 3 in brain tissue. Results indicate that vitamin E prevented the observed age-related decline in anion transport by lymphocytes and the generation of aged band 3 leading to SCA formation. beta-Carotene had no significant effect on the results of either assay. Since increased aged band 3 and decreased anion transport are initial steps in band 3 aging, which culminates in the generation of SCA and cellular removal, vitamin E prevents or delays aging of band 3-related proteins in lymphocytes and brain.
Resumo:
The neural cell adhesion molecule (N-CAM) mediates homophilic binding between a variety of cell types including neurons, neurons and glia, and neurons and muscle cells. The mechanism by which N-CAM on one cell interacts with N-CAM on another, however, is unknown. Attempts to identify which of the five immunoglobulin-like domains (Ig I-V) and the two fibronectin type III repeats (FnIII 1-2) in the extracellular region of N-CAM are involved in this process have led to ambiguous results. We have generated soluble recombinant proteins corresponding to each of the individual immunoglobulin domains and the combined FnIII 1-2 and prepared polyclonal antibodies specific for each. The purified proteins and antibodies were used in aggregation experiments with fluorescent microspheres and chicken embryo brain cells to determine possible contributions of each domain to homophilic adhesion. The recombinant domains were tested for their ability to bind to purified native N-CAM, to bind to each other, and to inhibit the aggregation of N-CAM on microspheres and the aggregation of neuronal cells. Each of the immunoglobulin domains bound to N-CAM, and in solution all of the immunoglobulin domains inhibited the aggregation of N-CAM-coated microspheres. Soluble Ig II, Ig III, and Ig IV inhibited neuronal aggregation; antibodies against whole N-CAM, the Ig III domain, and the Ig I domain all strongly inhibited neuronal aggregation, as well as the aggregation of N-CAM-coated microspheres. Of all the domains, the third immunoglobulin domain alone demonstrated the ability to self-aggregate, whereas Ig I bound to Ig V and Ig II bound to Ig IV. The combined FnIII 1-2 exhibited a slight ability to self-aggregate but did not bind to any of the immunoglobulin-like domains. These results suggest that N-CAM-N-CAM binding involves all five immunoglobulin domains and prompt the hypothesis that in homophilic cell-cell binding mediated by N-CAM these domains may interact pairwise in an antiparallel orientation.
Resumo:
Cell cycle withdrawal in postmitotic cells involves cyclin-dependent kinase (Cdk) inhibitors that repress cell cycle Cdk activity. During mouse neurogenesis, cortical postmitotic neurons are shown here to accumulate high levels of the p27 Cdk inhibitor compared with their progenitor neuroblasts. Elevated p27 levels in staged embryo brain extracts correlate with p27 binding to Cdk2, and Cdk inactivation. Yet, Cdk5, which is associated with the noncyclin activator p35 in neurons, remains active in the presence of high p27 levels. Both in vitro and in vivo, p27 and related inhibitors can recognize a cyclin D-Cdk5 complex but not a p35-Cdk5 complex. The results indicate that the choice of activator determines the susceptibility of Cdk5 to p27 and related Cdk inhibitors, and thus its ability to act in postmitotic cells.
Resumo:
The hemagglutination inhibition antibody titers against the JC and BK polyoma viruses (JCV and BKV, respectively) are significantly elevated in individuals exhibiting "rogue" cells among their cultured lymphocytes. However, the elevation is so much greater with respect to JCV that the BKV elevation could readily be explained by cross reactivity to the capsid protein of these two closely related viruses. The JCV exhibits high sequence homology with the simian papovavirus, simian virus 40 (SV40), and inoculation of human fetal brain cells with JCV produces polyploidy and chromosomal damage very similar to that produced by SV40. We suggest, by analogy with the effects of SV40, that these changes are due to the action of the viral large tumor antigen, a pluripotent DNA binding protein that acts in both transcription and replication. The implications of these findings for oncogenesis are briefly discussed.
Resumo:
The function of the recently discovered angiotensin II type 2 (AT2) receptor remains elusive. This receptor is expressed abundantly in fetus, but scantily in adult tissues except brain, adrenal medulla, and atretic ovary. In this study, we demonstrated that this receptor mediates programmed cell death (apoptosis). We observed this effect in PC12W cells (rat pheochromocytoma cell line) and R3T3 cells (mouse fibroblast cell line), which express abundant AT2 receptor but not AT1 receptor. The cellular mechanism appears to involve the dephosphorylation of mitogen-activated protein kinase (MAP kinase). Vanadate, a protein-tyrosine-phosphatase inhibitor, attenuated the dephosphorylation of MAP kinases by the AT2 receptor and restored the apoptotic changes. Antisense oligonucleotide to MAP kinase phosphatase 1 inhibited the AT2 receptor-mediated MAP kinase dephosphorylation and blocked the AT2 receptor-mediated apoptosis. These results suggest that protein-tyrosine-phosphatase, including MAP kinase phosphatase 1 activated by the AT2 receptor, is involved in apoptosis. We hypothesize that this apoptotic function of the AT2 receptor may play an important role in developmental biology and pathophysiology.
Resumo:
The dentate gyrus of the hippocampus is one of the few areas of the adult brain that undergoes neurogenesis. In the present study, cells capable of proliferation and neurogenesis were isolated and cultured from the adult rat hippocampus. In defined medium containing basic fibroblast growth factor (FGF-2), cells can survive, proliferate, and express neuronal and glial markers. Cells have been maintained in culture for 1 year through multiple passages. These cultured adult cells were labeled in vitro with bromodeoxyuridine and adenovirus expressing beta-galactosidase and were transplanted to the adult rat hippocampus. Surviving cells were evident through 3 months postimplantation with no evidence of tumor formation. Within 2 months postgrafting, labeled cells were found in the dentate gyrus, where they differentiated into neurons only in the intact region of the granule cell layer. Our results indicate that FGF-2 responsive progenitors can be isolated from the adult hippocampus and that these cells retain the capacity to generate mature neurons when grafted into the adult rat brain.
Resumo:
Cocaine exposure in utero causes severe alterations in the development of the central nervous system. To study the basis of these teratogenic effects in vitro, we have used cocultures of neurons and glial cells from mouse embryonic brain. Cocaine selectively affected embryonic neuronal cells, causing first a dramatic reduction of both number and length of neurites and then extensive neuronal death. Scanning electron microscopy demonstrated a shift from a multipolar neuronal pattern towards bi- and unipolarity prior to the rounding up and eventual disappearance of the neurons. Selective toxicity of cocaine on neurons was paralleled by a concomitant decrease of the culture content in microtubule-associated protein 2 (MAP2), a neuronal marker measured by solid-phase immunoassay. These effects on neurons were reversible when cocaine was removed from the culture medium. In contrast, cocaine did not affect astroglial cells and their glial fibrillary acidic protein (GFAP) content. Thus, in embryonic neuronal-glial cell cocultures, cocaine induces major neurite perturbations followed by neuronal death without affecting the survival of glial cells. Provided similar neuronal alterations are produced in the developing human brain, they could account for the qualitative or quantitative defects in neuronal pathways that cause a major handicap in brain function following in utero exposure to cocaine.
Resumo:
We have been studying the role and mechanism of estrogen action in the survival and differentiation of neurons in the basal forebrain and its targets in the cerebral cortex, hippocampus, and olfactory bulb. Previous work has shown that estrogen-target neurons in these regions widely coexpress the mRNAs for the neurotrophin ligands and their receptors, suggesting a potential substrate for estrogen-neurotrophin interactions. Subsequent work indicated that estrogen regulates the expression of two neurotrophin receptor mRNAs in prototypic peripheral neural targets of nerve growth factor. We report herein that the gene encoding the neurotophin brain-derived neurotrophic factor (BDNF) contains a sequence similar to the canonical estrogen response element found in estrogen-target genes. Gel shift and DNA footprinting assays indicate that estrogen receptor-ligand complexes bind to this sequence in the BDNF gene. In vivo, BDNF mRNA was rapidly up-regulated in the cerebral cortex and the olfactory bulb of ovariectomized animals exposed to estrogen. These data suggest that estrogen may regulate BDNF transcription, supporting our hypothesis that estrogen may be in a position to influence neurotrophin-mediated cell functioning, by increasing the availability of specific neurotrophins in forebrain neurons.
Resumo:
A systematic analysis of parthenogenetic (PG) cell fate within the central nervous system (CNS) was made throughout fetal development and neonatal and adult life. Chimeras were made between PG embryos carrying a ubiquitously expressed lacZ transgene and normal fertilized embryos. After detailed histological analysis, we find that the developmental potential of PG cells is spatially restricted to certain parts of the brain. PG cells are prevalent in telencephalic structures and are largely excluded from diencephalic structures, especially the hypothalamus. These spatial restrictions are established early in development. Behavioral studies with chimeras identified an increase in male aggression when the proportion of PG cells in the brain was high. These studies demonstrate that imprinted genes play key roles in development of the CNS and may be involved in behavior.
Resumo:
The epsilon 4 allele of apolipoprotein E (apoE) is a major risk factor for Alzheimer disease, suggesting that apoE may directly influence neurons in the aging brain. Recent data suggest that apoE-containing lipoproteins can influence neurite outgrowth in an isoform-specific fashion. The neuronal mediators of apoE effects have not been clarified. We show here that in a central nervous system-derived neuronal cell line, apoE3 but not apoE4 increases neurite extension. The effect of apoE3 was blocked at low nanomolar concentrations by purified 39-kDa protein that regulates ligand binding to the low density lipoprotein receptor-related protein (LRP). Anti-LRP antibody also completely abolished the neurite-promoting effect of apoE3. Understanding isoform-specific cell biological processes mediated by apoE-LRP interactions in central nervous system neurons may provide insight into Alzheimer disease pathogenesis.
Resumo:
The delivery of viral vectors to the brain for treatment of intracerebral tumors is most commonly accomplished by stereotaxic inoculation directly into the tumor. However, the small volume of distribution by inoculation may limit the efficacy of viral therapy of large or disseminated tumors. We have investigated mechanisms to increase vector delivery to intracerebral xenografts of human LX-1 small-cell lung carcinoma tumors in the nude rat. The distribution of Escherichia coli lacZ transgene expression from primary viral infection was assessed after delivery of recombinant virus by intratumor inoculation or intracarotid infusion with or without osmotic disruption of the blood-brain barrier (BBB). These studies used replication-compromised herpes simplex virus type 1 (HSV; vector RH105) and replication-defective adenovirus (AdRSVlacZ), which represent two of the most commonly proposed viral vectors for tumor therapy. Transvascular delivery of both viruses to intracerebral tumor was demonstrated when administered intraarterially (i.a.) after osmotic BBB disruption (n = 9 for adenovirus; n = 7 for HSV), while no virus infection was apparent after i.a. administration without BBB modification (n = 8 for adenovirus; n = 4 for HSV). The thymidine kinase-negative HSV vector infected clumps of tumor cells as a result of its ability to replicate selectively in dividing cells. Osmotic BBB disruption in combination with i.a. administration of viral vectors may offer a method of global delivery to treat disseminated brain tumors.
Resumo:
A G protein-coupled receptor for the pineal hormone melatonin was recently cloned from mammals and designated the Mel1a melatonin receptor. We now report the cloning of a second G protein-coupled melatonin receptor from humans and designate it the Mel1b melatonin receptor. The Mel1b receptor cDNA encodes a protein of 362 amino acids that is 60% identical at the amino acid level to the human Mel1a receptor. Transient expression of the Mel1b receptor in COS-1 cells results in high-affinity 2-[125I]iodomelatonin binding (Kd = 160 +/- 30 pM). In addition, the rank order of inhibition of specific 2-[125I]iodomelatonin binding by eight ligands is similar to that exhibited by the Mel1a melatonin receptor. Functional studies of NIH 3T3 cells stably expressing the Mel1b melatonin receptor indicate that it is coupled to inhibition of adenylyl cyclase. Comparative reverse transcription PCR shows that the Mel1b melatonin receptor is expressed in retina and, to a lesser extent, brain. PCR analysis of human-rodent somatic cell hybrids maps the Mel1b receptor gene (MTNR1B) to human chromosome 11q21-22. The Mel1b melatonin receptor may mediate the reported actions of melatonin in retina and participate in some of the neurobiological effects of melatonin in mammals.
Resumo:
Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. Here we report the derivation of a cloned cell line (R278.5) from a rhesus monkey blastocyst that remains undifferentiated in continuous passage for > 1 year, maintains a normal XY karyotype, and expresses the cell surface markers (alkaline phosphatase, stage-specific embryonic antigen 3, stage-specific embryonic antigen 4, TRA-1-60, and TRA-1-81) that are characteristic of human embryonal carcinoma cells. R278.5 cells remain undifferentiated when grown on mouse embryonic fibroblast feeder layers but differentiate or die in the absence of fibroblasts, despite the presence of recombinant human leukemia inhibitory factor. R278.5 cells allowed to differentiate in vitro secrete bioactive chorionic gonadotropin into the medium, express chorionic gonadotropin alpha- and beta-subunit mRNAs, and express alpha-fetoprotein mRNA, indicating trophoblast and endoderm differentiation. When injected into severe combined immunodeficient mice, R278.5 cells consistently differentiate into derivatives of all three embryonic germ layers. These results define R278.5 cells as an embryonic stem cell line, to our knowledge, the first to be derived from any primate species.