52 resultados para antiherbivore defense


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies in our laboratory as well as others strongly suggest that salicylic acid (SA) plays an important signaling role in plant defense against pathogens. We have found that increases in endogenous SA levels correlates with both resistance of tobacco to infection with tobacco mosaic virus and induction of defense-related genes such as that encoding pathogenesis-related protein 1 (PR-1). Some of this newly synthesized SA was conjugated to glucose to form SA beta-glucoside. A cell wall-associated beta-glucosidase activity that releases SA from this glucoside has been identified, suggesting that SA beta-glucoside serves as an inactive storage form of SA. By purifying a soluble SA-binding protein and isolating its encoding cDNA from tobacco, we have been able to further characterize the mechanism of SA signaling. This protein is a catalase, and binding of SA and its biologically active analogues inhibited catalase's ability to convert H2O2 to O2 and H2O. The resulting elevated levels of cellular H2O2 appeared to induce PR-1 gene expression, perhaps by acting as a second messenger. Additionally, transgenic tobacco expressing an antisense copy of the catalase gene and exhibiting depressed levels of catalase also showed constitutive expression of PR-1 genes. To further dissect the SA signaling pathway, we have tested several abiotic inducers of PR gene expression and disease resistance for their ability to stimulate SA production. Levels of SA and its glucoside rose following application of all of the inducers except 2,6-dichloroisonicotinic acid. 2,6-Dichloroisonicotinic acid was found to bind catalase directly and inhibit its enzymatic activity. Thus, it appears that many compounds that induce PR gene expression and disease resistance in plants inactivate catalases directly or indirectly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small GTP-binding proteins play a critical role in the regulation of a range of cellular processes--including growth, differentiation, and intracellular transportation. Previously, we isolated a gene, rgp1, encoding a small GTP-binding protein, by differential screening of a rice cDNA library with probe DNAs from rice tissues treated with or without 5-azacytidine, a powerful inhibitor of DNA methylation. To determine the physiological role of rgp1, the coding region was introduced into tobacco plants. Transformants, with rgp1 in either sense or antisense orientations, showed distinct phenotypic changes with reduced apical dominance, dwarfism, and abnormal flower development. These abnormal phenotypes appeared to be associated with the higher levels of endogenous cytokinins that were 6-fold those of wild-type plants. In addition, the transgenic plants produced salicylic acid and salicylic acid-beta-glucoside in an unusual response to wounding, thus conferring increased resistance to tobacco mosaic virus infection. In normal plants, the wound- and pathogen-induced signal-transduction pathways are considered to function independently. However, the wound induction of salicylic acid in the transgenic plants suggests that expression of rgp1 somehow interfered with the normal signaling pathways and resulted in cross-signaling between these distinct transduction systems. The results imply that the defense signal-transduction system consists of a complicated and finely tuned network of several regulatory factors, including cytokinins, salicylic acid, and small GTP-binding proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oligogalacturonides are plant cell wall-derived regulatory molecules which stimulate defense gene expression during pathogenesis. In vitro, these compounds enhance the phosphorylation of an approximately 34-kDa protein (pp34) in purified plasma membranes from potato and tomato leaves. We now show that polygalacturonate-enhanced phosphorylation of pp34 occurs in plasma membranes purified from tomato roots, hypocotyls, and stems and from undifferentiated potato cells. Furthermore, a similar phosphorylation is detected in leaf plasma membranes from soybean, a plant distantly related to tomato. Purified oligogalacturonides 13 to at least 26 residues long stimulate pp34 thiophosphorylation in vitro. This stimulation pattern differs from the induction of many known defense responses in vivo, where a narrower range of smaller fragments, between approximately 10 and 15 residues long, are active. On the basis of these differences we suggest that observed effects of applied exogenous oligogalacturonides on defense responses may not necessarily reflect the situation during pathogenesis. The cell wall could act as a barrier to many exogenous oligo- and polygalacturonides as well as other large regulatory ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used suspension-cultured parsley cells (Petroselinum crispum) and an oligopeptide elicitor derived from a surface glycoprotein of the phytopathogenic fungus Phytophthora megasperma f.sp. glycinea to study the signaling pathway from elicitor recognition to defense gene activation. Immediately after specific binding of the elicitor by a receptor in the plasma membrane, large and transient increases in several inorganic ion fluxes (Ca2+, H+, K+, Cl-) and H2O2 formation are the first detectable plant cell responses. These are rapidly followed by transient changes in the phosphorylation status of various proteins and by the activation of numerous defense-related genes, concomitant with the inactivation of several other, non-defense-related genes. A great diversity of cis-acting elements and trans-acting factors appears to be involved in elicitor-mediated gene regulation, similar to the apparently complex nature of the signal transduced intracellularly. With few exceptions, all individual defense responses analyzed in fungus-infected parsley leaves have been found to be closely mimicked in elicitor-treated, cultured parsley cells, thus validating the use of the elicitor/cell culture system as a valuable model system for these types of study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grand fir (Abies grandis) saplings and derived cell cultures are useful systems for studying the regulation of defensive oleoresinosis in conifers, a process involving both the constitutive accumulation of resin (pitch) in specialized secretory structures and the induced production of monoterpene olefins (turpentine) and diterpene resin acids (rosin) by nonspecialized cells at the site of injury. The pathways and enzymes involved in monoterpene and diterpene resin acid biosynthesis are described, as are the coinduction kinetics following stem injury as determined by resin analysis, enzyme activity measurements, and immunoblotting. The effects of seasonal development, light deprivation, and water stress on constitutive and wound-induced oleoresinosis are reported. Future efforts, including a PCR-based cloning strategy, to define signal transduction in the wound response and the resulting gene activation processes are delineated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plant defense response to microbial pathogens had been studied primarily by using biochemical and physiological techniques. Recently, several laboratories have developed a variety of pathosystems utilizing Arabidopsis thaliana as a model host so that genetic analysis could also be used to study plant defense responses. Utilizing a pathosystem that involves the infection of Arabidopsis with pathogenic pseudomonads, we have cloned the Arabidopsis disease-resistance gene RPS2, which corresponds to the avirulence gene avrRpt2 in a gene-for-gene relationship. RPS2 encodes a 105-kDa protein containing a leucine zipper, a nucleotide binding site, and 14 imperfect leucine-rich repeats. The RPS2 protein is remarkably similar to the product of the tobacco N gene, which confers resistance to tobacco mosaic virus. We have also isolated a series of Arabidopsis mutants that synthesize decreased levels of an Arabidopsis phytoalexin called camalexin. Analysis of these mutants indicated that camalexin does not play a significant role in limiting growth of avirulent Pseudomonas syringae strains during the hypersensitive defense response but that it may play a role in limiting the growth of virulent strains. More generally, we have shown that we can utilize Arabidopsis to systematically dissect the defense response by isolation and characterization of appropriate defense-related mutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic resistance in plants to root diseases is rare, and agriculture depends instead on practices such as crop rotation and soil fumigation to control these diseases. "Induced suppression" is a natural phenomenon whereby a soil due to microbiological changes converts from conducive to suppressive to a soilborne pathogen during prolonged monoculture of the susceptible host. Our studies have focused on the wheat root disease "take-all," caused by the fungus Gaeumannomyces graminis var. tritici, and the role of bacteria in the wheat rhizosphere (rhizobacteria) in a well-documented induced suppression (take-all decline) that occurs in response to the disease and continued monoculture of wheat. The results summarized herein show that antibiotic production plays a significant role in both plant defense by and ecological competence of rhizobacteria. Production of phenazine and phloroglucinol antibiotics, as examples, account for most of the natural defense provided by fluorescent Pseudomonas strains isolated from among the diversity of rhizobacteria associated with take-all decline. There appear to be at least three levels of regulation of genes for antibiotic biosynthesis: environmental sensing, global regulation that ties antibiotic production to cellular metabolism, and regulatory loci linked to genes for pathway enzymes. Plant defense by rhizobacteria producing antibiotics on roots and as cohabitants with pathogens in infected tissues is analogous to defense by the plant's production of phytoalexins, even to the extent that an enzyme of the same chalcone/stilbene synthase family used to produce phytoalexins is used to produce 2,4-diacetylphloroglucinol. The defense strategy favored by selection pressure imposed on plants by soilborne pathogens may well be the ability of plants to support and respond to rhizosphere microorganisms antagonistic to these pathogens.