150 resultados para alternating domains


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that when the cytosolic domains of the type I membrane proteins TGN38 and lysosomal glycoprotein 120 (lgp120) are added to a variety of reporter molecules, the resultant chimeric molecules are localized to the trans-Golgi network (TGN) and to lysosomes, respectively. In the present study we expressed chimeric constructs of rat TGN38 and rat lgp120 in HeLa cells. We found that targeting information in the cytosolic domain of TGN38 could be overridden by the presence of the lumenal and transmembrane domains of lgp120. In contrast, the presence of the transmembrane and cytosolic domains of TGN38 was sufficient to deliver the lumenal domain of lgp120 to the trans-Golgi network. On the basis of steady-state localization of the various chimeras and antibody uptake experiments, we propose that there is a hierarchy of targeting information in each molecule contributing to sorting within the endocytic pathway. The lumenal and cytosolic domains of lgp120 contribute to sorting and delivery to lysosomes, whereas the transmembrane and cytosolic domains of TGN38 contribute to sorting and delivery to the trans-Golgi network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amino acid sequence requirements of the transmembrane (TM) domain and cytoplasmic tail (CT) of the hemagglutinin (HA) of influenza virus in membrane fusion have been investigated. Fusion properties of wild-type HA were compared with those of chimeras consisting of the ectodomain of HA and the TM domain and/or CT of polyimmunoglobulin receptor, a nonviral integral membrane protein. The presence of a CT was not required for fusion. But when a TM domain and CT were present, fusion activity was greater when they were derived from the same protein than derived from different proteins. In fact, the chimera with a TM domain of HA and truncated CT of polyimmunoglobulin receptor did not support full fusion, indicating that the two regions are not functionally independent. Despite the fact that there is wide latitude in the sequence of the TM domain that supports fusion, a point mutation of a semiconserved residue within the TM domain of HA inhibited fusion. The ability of a foreign TM domain to support fusion contradicts the hypothesis that a pore is composed solely of fusion proteins and supports the theory that the TM domain creates fusion pores after a stage of hemifusion has been achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the fission yeast Schizosaccharomyces pombe, passage from G1 to S-phase requires the execution of the transcriptional factor complex that consists of the Cdc10 and Res1/2 molecules. This complex activates the MluI cell cycle box cis-element contained in genes essential for S-phase onset and progression. The rep2+ gene, isolated as a multicopy suppressor of a temperature-sensitive cdc10 mutant, has been postulated to encode a putative transcriptional activator subunit for the Res2–Cdc10 complex. To identify the rep2+ function and molecularly define its domain organization, we reconstituted the Res2–Cdc10 complex-dependent transcriptional activation in Saccharomyces cerevisiae. Reconstitution experiments, deletion analyses using one and two hybrid systems, and in vivo Res2 coimmunoprecipitation assays show that the Res2–Cdc10 complex itself can recognize but cannot activate MluI cell cycle box without Rep2, and that consistent with its postulated function, Rep2 contains 45-amino acid Res2 binding and 22-amino acid transcriptional activation domains in the middle and C terminus of the molecule, respectively. The functional essentiality of these domains is also demonstrated by their requirement for rescue of the cold-sensitive rep2 deletion mutant of fission yeast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accurate targeting of secretory vesicles to distinct sites on the plasma membrane is necessary to achieve polarized growth and to establish specialized domains at the surface of eukaryotic cells. Members of a protein complex required for exocytosis, the exocyst, have been localized to regions of active secretion in the budding yeast Saccharomyces cerevisiae where they may function to specify sites on the plasma membrane for vesicle docking and fusion. In this study we have addressed the function of one member of the exocyst complex, Sec10p. We have identified two functional domains of Sec10p that act in a dominant-negative manner to inhibit cell growth upon overexpression. Phenotypic and biochemical analysis of the dominant-negative mutants points to a bifunctional role for Sec10p. One domain, consisting of the amino-terminal two-thirds of Sec10p directly interacts with Sec15p, another exocyst component. Overexpression of this domain displaces the full-length Sec10 from the exocyst complex, resulting in a block in exocytosis and an accumulation of secretory vesicles. The carboxy-terminal domain of Sec10p does not interact with other members of the exocyst complex and expression of this domain does not cause a secretory defect. Rather, this mutant results in the formation of elongated cells, suggesting that the second domain of Sec10p is required for morphogenesis, perhaps regulating the reorientation of the secretory pathway from the tip of the emerging daughter cell toward the mother–daughter connection during cell cycle progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously shown that the LIM domains of paxillin operate as the focal adhesion (FA)-targeting motif of this protein. In the current study, we have identified the capacity of paxillin LIM2 and LIM3 to serve as binding sites for, and substrates of serine/threonine kinases. The activities of the LIM2- and LIM3-associated kinases were stimulated after adhesion of CHO.K1 cells to fibronectin; consequently, a role for LIM domain phosphorylation in regulating the subcellular localization of paxillin after adhesion to fibronectin was investigated. An avian paxillin-CHO.K1 model system was used to explore the role of paxillin phosphorylation in paxillin localization to FAs. We found that mutations of paxillin that mimicked LIM domain phosphorylation accelerated fibronectin-induced localization of paxillin to focal contacts. Further, blocking phosphorylation of the LIM domains reduced cell adhesion to fibronectin, whereas constitutive LIM domain phosphorylation significantly increased the capacity of cells to adhere to fibronectin. The potentiation of FA targeting and cell adhesion to fibronectin was specific to LIM domain phosphorylation as mutation of the amino-terminal tyrosine and serine residues of paxillin that are phosphorylated in response to fibronectin adhesion had no effect on the rate of FA localization or cell adhesion. This represents the first demonstration of the regulation of protein localization through LIM domain phosphorylation and suggests a novel mechanism of regulating LIM domain function. Additionally, these results provide the first evidence that paxillin contributes to “inside-out” integrin-mediated signal transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The members of the MCM protein family are essential eukaryotic DNA replication factors that form a six-member protein complex. In this study, we use antibodies to four MCM proteins to investigate the structure of and requirements for the formation of fission yeast MCM complexes in vivo, with particular regard to Cdc19p (MCM2). Gel filtration analysis shows that the MCM protein complexes are unstable and can be broken down to subcomplexes. Using coimmunoprecipitation, we find that Mis5p (MCM6) and Cdc21p (MCM4) are tightly associated with one another in a core complex with which Cdc19p loosely associates. Assembly of Cdc19p with the core depends upon Cdc21p. Interestingly, there is no obvious change in Cdc19p-containing MCM complexes through the cell cycle. Using a panel of Cdc19p mutants, we find that multiple domains of Cdc19p are required for MCM binding. These studies indicate that MCM complexes in fission yeast have distinct substructures, which may be relevant for function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cartilage matrix protein (CMP) is the prototype of the newly discovered matrilin family, all of which contain von Willebrand factor A domains. Although the function of matrilins remain unclear, we have shown that, in primary chondrocyte cultures, CMP (matrilin-1) forms a filamentous network, which is made up of two types of filaments, a collagen-dependent one and a collagen-independent one. In this study, we demonstrate that the collagen-independent CMP filaments are enriched in pericellular compartments, extending directly from chondrocyte membranes. Their morphology can be distinguished from that of collagen filaments by immunogold electron microscopy, and mimicked by that of self-assembled purified CMP. The assembly of CMP filaments can occur from transfection of a wild-type CMP transgene alone in skin fibroblasts, which do not produce endogenous CMP. Conversely, assembly of endogenous CMP filaments by chondrocytes can be inhibited specifically by dominant negative CMP transgenes. The two A domains within CMP serve essential but different functions during network formation. Deletion of the A2 domain converts the trimeric CMP into a mixture of monomers, dimers, and trimers, whereas deletion of the A1 domain does not affect the trimeric configuration. This suggests that the A2 domain modulates multimerization of CMP. Absence of either A domain from CMP abolishes its ability to form collagen-independent filaments. In particular, Asp22 in A1 and Asp255 in A2 are essential; double point mutation of these residues disrupts CMP network formation. These residues are part of the metal ion–dependent adhesion sites, thus a metal ion–dependent adhesion site–mediated adhesion mechanism may be applicable to matrilin assembly. Taken together, our data suggest that CMP is a bridging molecule that connects matrix components in cartilage to form an integrated matrix network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian Ran-binding protein-1 (RanBP1) and its fission yeast homologue, sbp1p, are cytosolic proteins that interact with the GTP-charged form of Ran GTPase through a conserved Ran-binding domain (RBD). In vitro, this interaction can accelerate the Ran GTPase-activating protein–mediated hydrolysis of GTP on Ran and the turnover of nuclear import and export complexes. To analyze RanBP1 function in vivo, we expressed exogenous RanBP1, sbp1p, and the RBD of each in mammalian cells, in wild-type fission yeast, and in yeast whose endogenous sbp1 gene was disrupted. Mammalian cells and wild-type yeast expressing moderate levels of each protein were viable and displayed normal nuclear protein import. sbp1− yeast were inviable but could be rescued by all four exogenous proteins. Two RBDs of the mammalian nucleoporin RanBP2 also rescued sbp1− yeast. In mammalian cells, wild-type yeast, and rescued mutant yeast, exogenous full-length RanBP1 and sbp1p localized predominantly to the cytosol, whereas exogenous RBDs localized predominantly to the cell nucleus. These results suggest that only the RBD of sbp1p is required for its function in fission yeast, and that this function may not require confinement of the RBD to the cytosol. The results also indicate that the polar amino-terminal portion of sbp1p mediates cytosolic localization of the protein in both yeast and mammalian cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synaptotagmins (Syts) are a family of vesicle proteins that have been implicated in both regulated neurosecretion and general membrane trafficking. Calcium-dependent interactions mediated through their C2 domains are proposed to contribute to the mechanism by which Syts trigger calcium-dependent neurotransmitter release. Syt IV is a novel member of the Syt family that is induced by cell depolarization and has a rapid rate of synthesis and a short half-life. Moreover, the C2A domain of Syt IV does not bind calcium. We have examined the biochemical and functional properties of the C2 domains of Syt IV. Consistent with its non–calcium binding properties, the C2A domain of Syt IV binds syntaxin isoforms in a calcium-independent manner. In neuroendocrine pheochromocytoma (PC12) cells, Syt IV colocalizes with Syt I in the tips of the neurites. Microinjection of the C2A domain reveals that calcium-independent interactions mediated through this domain of Syt IV inhibit calcium-mediated neurotransmitter release from PC12 cells. Conversely, the C2B domain of Syt IV contains calcium binding properties, which permit homo-oligomerization as well as hetero-oligomerization with Syt I. Our observation that different combinatorial interactions exist between Syt and syntaxin isoforms, coupled with the calcium stimulated hetero-oligomerization of Syt isoforms, suggests that the secretory machinery contains a vast repertoire of biochemical properties for sensing calcium and regulating neurotransmitter release accordingly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonribosomal nucleolar protein gar2 is required for 18S rRNA and 40S ribosomal subunit production in Schizosaccharomyces pombe. We have investigated the consequences of the absence of each structural domain of gar2 on cell growth, 18S rRNA production, and nucleolar structure. Deletion of gar2 RNA-binding domains (RBDs) causes stronger inhibition of growth and 18S rRNA accumulation than the absence of the whole protein, suggesting that other factors may be titrated by its remaining N-terminal basic/acidic serine-rich domain. These drastic functional defects correlate with striking nucleolar hypertrophy. Point mutations in the conserved RNP1 motifs of gar2 RBDs supposed to inhibit RNA–protein interactions are sufficient to induce severe nucleolar modifications but only in the presence of the N-terminal domain of the protein. Gar2 and its mutants also distribute differently in glycerol gradients: gar2 lacking its RBDs is found either free or assembled into significantly larger complexes than the wild-type protein. We propose that gar2 helps the assembly on rRNA of factors necessary for 40S subunit synthesis by providing a physical link between them. These factors may be recruited by the N-terminal domain of gar2 and may not be released if interaction of gar2 with rRNA is impaired.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drosophila Enabled (Ena) was initially identified as a dominant genetic suppressor of mutations in the Abelson tyrosine kinase and, more recently, as a member of the Ena/human vasodilator-stimulated phosphoprotein (VASP) family of proteins. We have used genetic, biochemical, and cell biological approaches to demonstrate the functional relationship between Ena and human VASP. In addition, we have defined the roles of Ena domains identified as essential for its activity in vivo. We have demonstrated that VASP rescues the embryonic lethality associated with loss of Ena function in Drosophila and have shown that Ena, like VASP, is associated with actin filaments and focal adhesions when expressed in cultured cells. To define sequences that are central to Ena function, we have characterized the molecular lesions present in two lethal ena mutant alleles that affected the Ena/VASP homology domain 1 (EVH1) and EVH2. A missense mutation that resulted in an amino acid substitution in the EVH1 domain eliminated in vitro binding of Ena to the cytoskeletal protein zyxin, a previously reported binding partner of VASP. A nonsense mutation that resulted in a C-terminally truncated Ena protein lacking the EVH2 domain failed to form multimeric complexes and exhibited reduced binding to zyxin and the Abelson Src homology 3 domain. Our analysis demonstrates that Ena and VASP are functionally homologous and defines the conserved EVH1 and EVH2 domains as central to the physiological activity of Ena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In polarized HepG2 cells, the sphingolipids glucosylceramide and sphingomyelin (SM), transported along the reverse transcytotic pathway, are sorted in subapical compartments (SACs), and subsequently targeted to either apical or basolateral plasma membrane domains, respectively. In the present study, evidence is provided that demonstrates that these sphingolipids constitute separate membrane domains at the luminal side of the SAC membrane. Furthermore, as revealed by the use of various modulators of membrane trafficking, such as calmodulin antagonists and dibutyryl-cAMP, it is shown that the fate of these separate sphingolipid domains is regulated by different signals, including those that govern cell polarity development. Thus under conditions that stimulate apical plasma membrane biogenesis, SM is rerouted from a SAC-to-basolateral to a SAC-to-apical pathway. The latter pathway represents the final leg in the transcytotic pathway, followed by the transcytotic pIgR–dIgA protein complex. Interestingly, this pathway is clearly different from the apical recycling pathway followed by glucosylceramide, further indicating that randomization of these pathways, which are both bound for the apical membrane, does not occur. The consequence of the potential coexistence of separate sphingolipid domains within the same compartment in terms of “raft” formation and apical targeting is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Schizosaccharomyces pombe the MBF (DSC1) complex mediates transcriptional activation at Start and is composed of a common subunit called Cdc10 in combination with two alternative DNA-binding partners, Res1 and Res2. It has been suggested that a high-activity MBF complex (at G1/S) is switched to a low-activity complex (in G2) by the incorporation of the negative regulatory subunit Res2. We have analyzed MBF protein–protein interactions and find that both Res proteins are associated with Cdc10 throughout the cell cycle, arguing against this model. Furthermore we demonstrate that Res2 is capable of interacting with a mutant form of Cdc10 that has high transcriptional activity. It has been shown previously that both Res proteins are required for periodic cell cycle–regulated transcription. Therefore a series of Res1–Res2 hybrid molecules was used to determine the domains that are specifically required to regulate periodic transcription. In Res2 the nature of the C-terminal region is critical, and in both Res1 and Res2, a domain overlapping the N-terminal ankyrin repeat and a recently identified activation domain is important for mediating cell cycle–regulated transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several membrane-associating signals, including covalently linked fatty acids, are found in various combinations at the N termini of signaling proteins. The function of these combinations was investigated by appending fatty acylated N-terminal sequences to green fluorescent protein (GFP). Myristoylated plus mono/dipalmitoylated GFP chimeras and a GFP chimera containing a myristoylated plus a polybasic domain were localized similarly to the plasma membrane and endosomal vesicles, but not to the nucleus. Myristoylated, nonpalmitoylated mutant chimeric GFPs were localized to intracellular membranes, including endosomes and the endoplasmic reticulum, and were absent from the plasma membrane, the Golgi, and the nucleus. Dually palmitoylated GFP was localized to the plasma membrane and the Golgi region, but it was not detected in endosomes. Nonacylated GFP chimeras, as well as GFP, showed cytosolic and nuclear distribution. Our results demonstrate that myristoylation is sufficient to exclude GFP from the nucleus and associate with intracellular membranes, but plasma membrane localization requires a second signal, namely palmitoylation or a polybasic domain. The similarity in localization conferred by the various myristoylated and palmitoylated/polybasic sequences suggests that biophysical properties of acylated sequences and biological membranes are key determinants in proper membrane selection. However, dual palmitoylation in the absence of myristoylation conferred significant differences in localization, suggesting that multiple palmitoylation sites and/or enzymes may exist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear domains, called cleavage bodies, are enriched in the RNA 3′-processing factors CstF 64 kDa and and CPSF 100 kDa. Cleavage bodies have been found either overlapping with or adjacent to coiled bodies. To determine whether the spatial relationship between cleavage bodies and coiled bodies was influenced by the cell cycle, we performed cell synchronization studies. We found that in G1 phase cleavage bodies and coiled bodies were predominantly coincident, whereas in S phase they were mostly adjacent to each other. In G2 cleavage bodies were often less defined or absent, suggesting that they disassemble at this point in the cell cycle. A small number of genetic loci have been reported to be juxtaposed to coiled bodies, including the genes for U1 and U2 small nuclear RNA as well as the two major histone gene clusters. Here we show that cleavage bodies do not overlap with small nuclear RNA genes but do colocalize with the histone genes next to coiled bodies. These findings demonstrate that the association of cleavage bodies and coiled bodies is both dynamic and tightly regulated and suggest that the interaction between these nuclear neighbors is related to the cell cycle–dependent expression of histone genes.