150 resultados para Tumor necrosis factor receptor superfamily
Resumo:
In Alzheimer disease (AD) the amyloid beta-peptide (A beta) accumulates in plaques in the brain. A beta can be neurotoxic by a mechanism involving induction of reactive oxygen species (ROS) and elevation of intracellular free calcium levels ([Ca2+]i). In light of evidence for an inflammatory response in the brain in AD and reports of increased levels of tumor necrosis factor (TNF) in AD brain we tested the hypothesis that TNFs affect neuronal vulnerability to A beta. A beta-(25-35) and A beta-(1-40) induced neuronal degeneration in a concentration- and time-dependent manner. Pretreatment of cultures for 24 hr with TNF-beta or TNF-alpha resulted in significant attenuation of A beta-induced neuronal degeneration. Accumulation of peroxides induced in neurons by A beta was significantly attenuated in TNF-pretreated cultures, and TNFs protected neurons against iron toxicity, suggesting that TNFs induce antioxidant pathways. The [Ca2+]i response to glutamate (quantified by fura-2 imaging) was markedly potentiated in neurons exposed to A beta, and this action of A beta was suppressed in cultures pretreated with TNFs. Electrophoretic mobility-shift assays demonstrated an induction of a kappa beta-binding activity in hippocampal cells exposed to TNFs. Exposure of cultures to I kappa B (MAD3) antisense oligonucleotides, a manipulation designed to induce NF-kappa B, mimicked the protection by TNFs. These data suggest that TNFs protect hippocampal neurons against A beta toxicity by suppressing accumulation of ROS and Ca2+ and that kappa B-dependent transcription is sufficient to mediate these effects. A modulatory role for TNF in the neurodegenerative process in AD is proposed.
Resumo:
Genetic studies in chickens and receptor interference experiments have indicated that avian leukosis virus (ALV)-E may utilize a cellular receptor related to the receptor for ALV-B and ALV-D. Recently, we cloned CAR1, a tumor necrosis factor receptor (TNFR)-related protein, that serves as a cellular receptor for ALV-B and ALV-D. To determine whether the cellular receptor for ALV-E is a CAR1-like protein, a cDNA library was made from turkey embryo fibroblasts (TEFs), which are susceptible to ALV-E infection, but not to infection by ALV-B and ALV-D. The cDNA library was screened with a radioactively labeled CAR1 cDNA probe, and clones that hybridized with the probe were isolated. A 2.3-kb cDNA clone was identified that conferred susceptibility to ALV-E infection, but not to ALV-B infection, when expressed in transfected human 293 cells. The functional cDNA clone is predicted to encode a 368 amino acid protein with significant amino acid similarity to CAR1. Like CAR1, the TEF protein is predicted to have two extracellular TNFR-like cysteine-rich domains and a putative death domain similar to those of TNFR I and Fas. Flow cytometric analysis and immunoprecipitation experiments demonstrated specific binding between the TEF CAR1-related protein and an immunoadhesin composed of the surface (SU) envelope protein of subgroup E (RAV-0) virus fused to the constant region of a rabbit immunoglobulin. These two activities of the TEF CAR1-related protein, specific binding to ALV-E SU and permitting entry only of ALV-E, have unambiguously identified this protein as a cellular receptor specific for subgroup E ALV.
Resumo:
Epstein–Barr virus encodes integral membrane proteins LMP1 and LMP2A in transformed lymphoblastoid cell lines. We now find that LMP1 associates with the cell cytoskeleton through a tumor necrosis factor receptor-associated factor-interacting domain, most likely mediated by tumor necrosis factor receptor-associated factor 3. LMP1 is palmitoylated, and the transmembrane domains associate with lipid rafts. Mutation of LMP1 cysteine-78 abrogates palmitoylation but does not affect raft association or NF-κB or c-Jun N-terminal kinase activation. LMP2A also associates with rafts and is palmitoylated but does not associate with the cell cytoskeleton. The associations of LMP1 and LMP2A with rafts and of LMP1 with the cell cytoskeleton are likely to effect interactions with cell proteins involved in shape, motility, signal transduction, growth, and survival.
Resumo:
Fas, a member of the tumor necrosis factor receptor family, can induce apoptosis when activated by Fas ligand binding or anti-Fas antibody crosslinking. Genetic studies have shown that a defect in Fas-mediated apoptosis resulted in abnormal development and function of the immune system in mice. A point mutation in the cytoplasmic domain of Fas (a single base change from T to A at base 786), replacing isoleucine with asparagine, abolishes the signal transducing property of Fas. Mice homozygous for this mutant allele (lprcg/lprcg mice) develop lymphadenopathy and a lupus-like autoimmune disease. Little is known about the mechanism of signal transduction in Fas-mediated apoptosis. In this study, we used the two-hybrid screen in yeast to isolate a Fas-associated protein factor, FAF1, which specifically interacts with the cytoplasmic domain of wild-type Fas but not the lprcg-mutated Fas protein. This interaction occurs not only in yeast but also in mammalian cells. When transiently expressed in L cells, FAF1 potentiated Fas-induced apoptosis. A search of available DNA and protein sequence data banks did not reveal significant homology between FAF1 and known proteins. Therefore, FAF1 is an unusual protein that binds to the wild type but not the inactive point mutant of Fas. FAF1 potentiates Fas-induced cell killing and is a candidate signal transducing molecule in the regulation of apoptosis.
Resumo:
Activation of the cascade of proteolytic caspases has been identified as the final common pathway of apoptosis in diverse biological systems. We have isolated a gene, termed MRIT, that possesses overall sequence homology to FLICE (MACH), a large prodomain caspase that links the aggregated complex of the death domain receptors of the tumor necrosis factor receptor family to downstream caspases. However, unlike FLICE, the C-terminal domain of MRIT lacks the caspase catalytic consensus sequence QAC(R/Q)G. Nonetheless MRIT activates caspase-dependent death. Using yeast two-hybrid assays, we demonstrate that MRIT associates with caspases possessing large and small prodomains (FLICE, and CPP32/YAMA), as well as with the adaptor molecule FADD. In addition, MRIT simultaneously and independently interacts with BclXL and FLICE in mammalian cells. Thus, MRIT is a mammalian protein that interacts simultaneously with both caspases and a Bcl-2 family member.
Resumo:
We have identified and characterized CLARP, a caspase-like apoptosis-regulatory protein. Sequence analysis revealed that human CLARP contains two amino-terminal death effector domains fused to a carboxyl-terminal caspase-like domain. The structure and amino acid sequence of CLARP resemble those of caspase-8, caspase-10, and DCP2, a Drosophila melanogaster protein identified in this study. Unlike caspase-8, caspase-10, and DCP2, however, two important residues predicted to be involved in catalysis were lost in the caspase-like domain of CLARP. Analysis with fluorogenic substrates for caspase activity confirmed that CLARP is catalytically inactive. CLARP was found to interact with caspase-8 but not with FADD/MORT-1, an upstream death effector domain-containing protein of the Fas and tumor necrosis factor receptor 1 signaling pathway. Expression of CLARP induced apoptosis, which was blocked by the viral caspase inhibitor p35, dominant negative mutant caspase-8, and the synthetic caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-(OMe)-fluoromethylketone (zVAD-fmk). Moreover, CLARP augmented the killing ability of caspase-8 and FADD/MORT-1 in mammalian cells. The human clarp gene maps to 2q33. Thus, CLARP represents a regulator of the upstream caspase-8, which may play a role in apoptosis during tissue development and homeostasis.
Resumo:
Development of natural killer (NK) cells is thought to depend on interactions between NK progenitors and the bone marrow (BM) microenvironment; however, little is known about the molecular signals involved. Here we show that lymphotoxin (LT) provides an important signal for the development of both NK cells and NK/T cells. LTα−/− mice show marked reduction in splenic and BM NK and NK/T cell numbers and dramatically impaired NK and NK/T cell function. Mice deficient in either tumor necrosis factor receptor (TNFR)-I or TNFR-II have normal numbers of NK and NK/T cells, implying that neither of the TNFRs nor soluble LTα3 is required for development of these cell types. Reciprocal BM transfers between LTα−/− and wild-type mice suggest that close interactions between membrane LT-expressing NK cell precursors and LT-responsive radioresistant stromal cells are necessary for NK cell development. When LT-deficient BM cells are incubated with IL-15, NK cells are formed. In addition, LT-deficient BM cells produce IL-15 after activation. Thus, membrane LT appears to deliver a signal for NK cell development that is either independent of IL-15 or upstream in the IL-15 pathway. These results reveal a novel function for membrane LT in NK and NK/T cell development. They also support a cellular and molecular mechanism by which NK cell precursors themselves deliver essential signals, through the membrane ligand, that induce the microenvironment to promote further NK cell and NK/T cell development.
Resumo:
Pathogens, inflammatory signals, and stress cause acute transcriptional responses in cells. The induced expression of genes in response to these signals invariably involves transcription factors of the NF-κB and AP-1/ATF families. Activation of NF-κB factors is thought to be mediated primarily via IκB kinases (IKK), whereas that of AP-1/ATF can be mediated by stress-activated protein kinases (SAPKs; also named Jun kinases or JNKs). IKKα and IKKβ are two catalytic subunits of a core IKK complex that also contains the regulatory subunit NEMO (NF-κB essential modulator)/IKKγ. The latter protein is essential for activation of the IKKs, but its mechanism of action is not known. Here we describe the molecular cloning of CIKS (connection to IKK and SAPK/JNK), a previously unknown protein that directly interacts with NEMO/IKKγ in cells. When ectopically expressed, CIKS stimulates IKK and SAPK/JNK kinases and it transactivates an NF-κB-dependent reporter. Activation of NF-κB is prevented in the presence of kinase-deficient, interfering mutants of the IKKs. CIKS may help to connect upstream signaling events to IKK and SAPK/JNK modules. CIKS could coordinate the activation of two stress-induced signaling pathways, functions reminiscent of those noted for tumor necrosis factor receptor-associated factor adaptor proteins.
Resumo:
FADD/Mort1, initially identified as a Fas-associated death-domain containing protein, functions as an adapter molecule in apoptosis initiated by Fas, tumor necrosis factor receptor-I, DR3, and TRAIL-receptors. However, FADD likely participates in additional signaling cascades. FADD-null mutations in mice are embryonic-lethal, and analysis of FADD−/− T cells from RAG-1−/− reconstituted chimeras has suggested a role for FADD in proliferation of mature T cells. Here, we report the generation of T cell-specific FADD-deficient mice via a conditional genomic rescue approach. We find that FADD-deficiency leads to inhibition of T cell development at the CD4−CD8− stage and a reduction in the number of mature T cells. The FADD mutation does not affect apoptosis or the proximal signaling events of the pre-T cell receptor; introduction of a T cell receptor transgene fails to rescue the mutant phenotype. These data suggest that FADD, through either a death-domain containing receptor or a novel receptor-independent mechanism, is required for the proliferative phase of early T cell development.
Resumo:
Signaling through the Toll receptor is required for dorsal/ventral polarity in Drosophila embryos, and also plays an evolutionarily conserved role in the immune response. Upon ligand binding, Toll appears to multimerize and activate the associated kinase, Pelle. However, the immediate downstream targets of Pelle have not been identified. Here we show that Drosophila tumor necrosis factor receptor-associated factor 2 (dTRAF2), a homologue of human TRAF6, physically and functionally interacts with Pelle, and is phosphorylated by Pelle in vitro. Importantly, dTRAF2 and Pelle cooperate to activate Dorsal synergistically in cotransfected Schneider cells. Deletion of the C-terminal TRAF domain of dTRAF2 enhances Dorsal activation, perhaps reflecting the much stronger interaction of the mutant protein with phosphorylated, active Pelle. Taken together, our results indicate that Pelle and dTRAF2 physically and functionally interact, and that the TRAF domain acts as a regulator of this interaction. dTRAF2 thus appears to be a downstream target of Pelle. We discuss these results in the context of Toll signaling in flies and mammals.
Fas (CD95) expression and death-mediating function are induced by CD4 cross-linking on CD4+ T cells.
Resumo:
The CD4 receptor contributes to T-cell activation by coligating major histocompatibility complex class II on antigen presenting cells with the T-cell receptor (TCR)/CD3 complex, and triggering a cascade of signaling events including tyrosine phosphorylation of intracellular proteins. Paradoxically, CD3 cross-linking prior to TCR stimulation results in apoptotic cell death, as does injection of anti-CD4 antibodies in vivo of CD4 ligation by HIV glycoprotein (gp) 120. In this report we investigate the mechanism by which CD4 cross-linking induces cell death. We have found that CD4 cross-linking results in a small but rapid increase in levels of cell surface Fas, a member of the tumor necrosis factor receptor family implicated in apoptotic death and maintenance of immune homeostasis. Importantly, CD4 cross-linking triggered the ability of Fas to function as a death molecule. Subsequent to CD4 cross-linking, CD4+ splenocytes cultured overnight became sensitive to Fas-mediated death. Death was Fas-dependent, as demonstrated by cell survival in the absence of plate-bound anti-Fas antibody, and by the lack of CD4-induced death in cells from Fas-defective lymphoproliferative (lpr) mice. We demonstrate here that CD4 regulates the ability of Fas to induce cell death in Cd4+ T cells.
Resumo:
CD40 is a 45-kDa glycoprotein member of the tumor necrosis factor receptor (TNFR) family expressed on B cells, thymic epithelial cells, dendritic cells, and some carcinoma cells. The unique capacity of CD40 to trigger immunoglobulin isotype switching is dependent on the activation of protein-tyrosine kinases, yet CD40 possesses no kinase domain and no known consensus sequences for binding to protein-tyrosine kinases. Recently, an intracellular protein (CD40bp/LAP-1/CRAF-1) which belongs to the family of TNFR-associated proteins was reported to associate with CD40. We describe a 23-kDa cell surface protein (p23) which is specifically associated with CD40 on B cells and on urinary bladder transitional carcinoma cells. Protein microsequencing revealed that p23 shows no homology to any known protein. A rabbit antibody raised against a peptide derived from p23 recognized a 23-kDa protein in CD40 immunoprecipitates. In contrast to CD40bp/LAP-1/CRAF-1, p23 was not associated with TNFR p80 (CD120b). These findings suggest that p23 is a novel member of the CD40 receptor complex.
Resumo:
CD30 is a member of the tumor necrosis factor (TNF) receptor superfamily. CD30 is expressed on normal activated lymphocytes, on several virally transformed T- or B-cell lines and on neoplastic cells of Hodgkin's lymphoma. The interaction of CD30 with its ligand induces pleiotropic effects on cells resulting in proliferation, differentiation, or death. The CD30 cytoplasmic tail interacts with TNF receptor-associated factors (TRAFs), which have been shown to transduce signals mediated by TNF-R2 and CD40. We demonstrate here that TRAF2 also plays an important role in CD30-induced NF-kappa B activation. We also show that TRAF2-mediated activation of NF-kappa B plays a role in the activation of HIV transcription induced by CD30 cross-linking. Detailed site-directed mutagenesis of the CD30 cytoplasmic tail reveals that there are two independent binding sites for TRAF, each interacting with a different domain of TRAF. Furthermore, we localized the TRAF-C binding site in CD30 to a 5-7 amino acid stretch.
Resumo:
Identification and characterization of p53 target genes would lead to a better understanding of p53 functions and p53-mediated signaling pathways. Two putative p53 binding sites were identified in the promoter of a gene encoding PTGF-β, a type β transforming growth factor (TGF-β) superfamily member. Gel shift assay showed that p53 bound to both sites. Luciferase-coupled transactivation assay revealed that the gene promoter was activated in a p53 dose- as well as p53 binding site-dependent manner by wild-type p53 but not by several p53 mutants. The p53 binding and transactivation of the PTGF-β promoter was enhanced by etoposide, a p53 activator, and was largely blocked by a dominant negative p53 mutant. Furthermore, expression of endogenous PTGF-β was remarkably induced by etoposide in p53-positive, but not in p53-negative, cell lines. Finally, the conditioned medium collected from PTGF-β-overexpressing cells, but not from the control cells, suppressed tumor cell growth. Growth suppression was not, however, seen in cells that lack functional TGF-β receptors or Smad4, suggesting that PTGF-β acts through the TGF-β signaling pathway. Thus, PTGF-β, a secretory protein, is a p53 target that could mediate p53-induced growth suppression in autocrinal as well as paracrinal fashions. The finding made a vertical connection between p53 and TGF-β signaling pathways in controlling cell growth and implied a potential important role of p53 in inflammation regulation via PTGF-β.
Resumo:
Prostate carcinoma is the second leading cause of death from malignancy in men in the United States. Prostate cancer cells express type I insulin-like growth factor receptor (IGF-IR) and prostate cancer selectively metastazises to bone, which is an environment rich in insulin-like growth factors (IGFs), thereby supporting a paracrine action for cancer cell proliferation. We asked whether the IGF-IR is coupled to tumorigenicity and invasion of prostate cancer. When rat prostate adenocarcinoma cells (PA-III) were stably transfected with an antisense IGF-IR expression construct containing the ZnSO4-inducible metallothionein-1 transcriptional promoter, the transfectants expressed high levels of IGF-IR antisense RNA after induction with ZnSO4, which resulted in dramatically reduced levels of endogenous IGF-IR mRNA. A significant reduction in expression both of tissue-type plasminogen activator and of urokinase-type plasminogen activator occurred in PA-III cells accompanying inhibition of IGF-IR. Subcutaneous injection of either nontransfected PA-III or PA-III cells transfected with vector minus the IGF-IR insert into nude mice resulted in large tumors after 4 weeks. However, mice injected with IGF-IR antisense-transfected PA-III cells either developed tumors 90% smaller than controls or remained tumor-free after 60 days of observation. When control-transfected PA-III cells were inoculated over the abraded calvaria of nude mice, large tumors formed with invasion of tumor cells into the brain parenchyma. In contrast, IGF-IR antisense transfectants formed significantly smaller tumors with no infiltration into brain. These results indicate an important role for the IGF/IGF-IR pathway in metastasis and provide a basis for targeting IGF-IR as a potential treatment for prostate cancer.