55 resultados para Transducer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myeloid leukemia M1 cells can be induced for growth arrest and terminal differentiation into macrophages in response to interleukin 6 (IL-6) or leukemia inhibitory factor (LIF). Recently, a large number of cytokines and growth factors have been shown to activate the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. In the case of IL-6 and LIF, which share a signal transducing receptor gp130, STAT3 is specifically tyrosine-phosphorylated and activated by stimulation with each cytokine in various cell types. To know the role of JAK-STAT pathway in M1 differentiation, we have constructed dominant negative forms of STAT3 and established M1 cell lines that constitutively express them. These M1 cells that overexpressed dominant negative forms showed no induction of differentiation-associated markers including Fc gamma receptors, ferritin light chain, and lysozyme after treatment with IL-6. Expression of either c-myb or c-myc was not downregulated. Furthermore, IL-6- and LIF-mediated growth arrest and apoptosis were completely blocked. Thus these findings demonstrate that STAT3 activation is the critical step in a cascade of events that leads to terminal differentiation of M1 cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ERK6, a mitogen-activated protein (MAP) kinase-related serine/threonine kinase, is highly expressed in human skeletal muscle and appears to function as a signal transducer during differentiation of myoblasts to myotubes. In transfected 293 cells, activation of the 45-kDa enzyme results in tyrosine-phosphorylated 46- and 56-kDa forms, which phosphorylate myelin basic protein. Overexpression of wild-type ERK6 or the inactive mutant Y185F has no effect on fibroblast and myoblast proliferation, but it enhances or inhibits C2C12 cell differentiation to myotubes, respectively. Our findings suggest ERK6 to be a tissue-specific, differentiation signal-transducing factor that is connected to phosphotyrosine-mediated signaling pathways distinct from those activating other members of the MAP kinase family such as LRK1 and ERK2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pre-T-cell receptor, composed of the T-cell receptor (TCR) beta chain (TCRbeta), pre-Talpha (pTalpha) chain, and CD3 molecules, has been postulated to be a transducer of signals during the early stages of T-cell development. To examine the function of the transmembrane pTalpha chain during tbymocyte development, we generated pTalpha-/- embryonic stem cells and assayed their ability to differentiate into lymphoid cells in vivo after injection into recombination-activating gene (RAG)-2-deficient blastocysts. Thymocytes representing all stages of T-cell differentiation were detected in the thymus of pTalpha-/- chimeric mice, indicating that thymocyte development can occur without pTalpha. However, greatly reduced thymocyte numbers and substantially increased percentages of both CD4-CD8- thymocytes and TCRgammadelta+ thymocytes suggest that pTalpha plays a critical role in thymocyte expansion. To investigate the role of the pTalpha chain in allelic exclusion at the TCRbeta locus, a functionally rearranged TCRbeta minigene was introduced into pTalpha-/- and pTalpha+/- embryonic stem cells, which were subsequently assayed by RAG-2-deficient blastocyst complementation. In the absence of pTalpha, expression of the transgenic TCRbeta inhibited rearrangement of the endogenous TCRbeta locus to an extent similar to that seen in normal TCRbeta transgenic mice, suggesting that pTalpha may not be required for signaling allelic exclusion at the TCRbeta locus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The IFNAR chain of the type I interferon (IFN) receptor (IFNIR) undergoes rapid ligand-dependent tyrosine phosphorylation and acts as a species-specific transducer for type I IFN action. Using the vaccinia/T7 expression system to amplify IFNAR expression, we found that human HeLa-S3 cells transiently express high levels of cell surface IFNAR chains (approximately 250,000 chains per cell). Metabolic labeling and immunoblot analysis of transfected HeLa cells show that the IFNAR chain is initially detected as 65-kDa and 98-kDa precursors, and then as the 130-kDa mature protein. Due to variation in N-glycosylation, the apparent molecular mass of the mature IFNAR chain varies from 105 to 135 kDa in different cells. IFNIR structure was characterized in various human cell lines by analyzing 125I-labeled IFN cross-linked complexes recognized by various antibodies against IFNIR subunits and JAK protein-tyrosine kinases. Precipitation of cross-linked material from Daudi cells with anti-IFNAR antibodies showed that IFNAR was present in a 240-kDa complex. Precipitation of cross-linked material from U937 cells with anti-TYK2 sera revealed a 240-kDa complex, which apparently did not contain IFNAR and was not present in IFN-resistant HEC1B cells. The tyrosine phosphorylation and down-regulation of the IFNAR chain were induced by type I IFN in several human cell lines of diverse origins but not in HEC1B cells. However, of type I IFNs, IFN-beta uniquely induced the tyrosine phosphorylation of a 105-kDa protein associated with the IFNAR chain in two lymphoblastoid cell lines (Daudi and U266), demonstrating the specificity of transmembrane signaling for IFN-beta and IFN-alpha through the IFNAR chain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although prolactin and interleukin 2 (IL-2) can elicit distinct physiological responses, we have found that their signal pathways share a common signal transducer and activator of transcription, STAT5. STAT5 was originally identified as a mammary gland factor induced by prolactin in lactating breast cells. Here we demonstrate that STAT5 is activated after IL-2 stimulation of two responsive lymphocyte cell lines, Nb2 and YT. Activation of STAT5 is measured both by IL-2-induced tyrosine phosphorylation and by IL-2-induced DNA binding. The STAT5 DNA recognition site is the same as the interferon gamma-activated site (GAS) in the interferon regulatory factor 1 gene. We demonstrate that the GAS element is necessary and sufficient for transcriptional induction by both IL-2 and prolactin in T lymphocytes. These results indicate that the role of STAT5 in the regulation of gene expression is not restricted to mammary cells or to prolactin, but is an integral part of the signal pathway of a critical immunomodulatory cytokine, IL-2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microtubules have been proposed to function as rigid struts which oppose cellular contraction. Consistent with this hypothesis, microtubule disruption strengthens the contractile force exerted by many cell types. We have investigated alternative explanation for the mechanical effects of microtubule disruption: that microtubules modulate the mechanochemical activity of myosin by influencing phosphorylation of the myosin regulatory light chain (LC20). We measured the force produced by a population of fibroblasts within a collagen lattice attached to an isometric force transducer. Treatment of cells with nocodazole, an inhibitor of microtubule polymerization, stimulated an isometric contraction that reached its peak level within 30 min and was typically 30-45% of the force increase following maximal stimulation with 30% fetal bovine serum. The contraction following nocodazole treatment was associated with a 2- to 4-fold increase in LC20 phosphorylation. The increases in both force and LC20 phosphorylation, after addition of nocodazole, could be blocked or reversed by stabilizing the microtubules with paclitaxel (former generic name, taxol). Increasing force and LC20 phosphorylation by pretreatment with fetal bovine serum decreased the subsequent additional contraction upon microtubule disruption, a finding that appears inconsistent with a load-shifting mechanism. Our results suggest that phosphorylation of LC20 is a common mechanism for the contractions stimulated both by microtubule poisons and receptor-mediated agonists. The modulation of myosin activity by alterations in microtubule assembly may coordinate the physiological functions of these cytoskeletal components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The signaling mechanisms responsible for the induced expression of interferon (IFN) genes by viral infection or double-stranded RNA (dsRNA) are not well understood. Here we investigate the role of the interferon-induced dsRNA-dependent protein kinase PKR in the regulation of IFN induction. Biological activities attributed to PKR include regulating protein synthesis, mediating IFN actions, and functioning as a possible tumor suppressor. Since binding of dsRNA is required for its activation, PKR has been considered as a candidate signal transducer for regulating IFN expression. To examine this role of PKR, loss-of-function phenotypes in stable transformants of promonocytic U-937 cells were achieved by two different strategies, overexpression of an antisense PKR transcript or a dominant negative PKR mutant gene. Both types of PKR-deficient cells were more permissive for viral replication than the control U-937 cells. As the result of PKR loss, they also showed impaired induction of IFN-alpha and IFN-beta genes in response to several inducers--specifically, encephalomyocarditis virus, lipopolysaccharide, and phorbol 12-myristate 13-acetate. Interestingly, while IFN-alpha induction by dsRNA was impaired in PKR-deficient cells, IFN-beta induction remained intact. Loss of PKR function also resulted in decreased antiviral activity as elicited by IFN-alpha and, to a greater extent, by IFN-gamma. These results implicate PKR in the regulation of several antiviral activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high-affinity interleukin 2 (IL-2) receptor (IL-2R) consists of three subunits: the IL-2R alpha, IL-2R beta c, and IL-2R gamma c chains. Two members of the Janus kinase family, Jak1 and Jak3, are associated with IL-2R beta c and IL-2R gamma c, respectively, and they are activated upon IL-2 stimulation. The cytokine-mediated Jak kinase activation usually results in the activation of a family of latent transcription factors termed Stat (signal transducer and activator of transcription) proteins. Recently, the IL-2-induced Stat protein was purified from human lymphocytes and found to be the homologue of sheep Stat5/mammary gland factor. We demonstrate that the human Stat5 is activated by IL-2 and that Jak3 is required for the efficient activation. The cytoplasmic region of the IL-2R beta c chain required for activation of Stat5 is mapped within the carboxyl-terminal 147 amino acids. On the other hand, this region is not essential for IL-2-induced cell proliferation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the physiological roles of gp130 in detail and to determine the pathological consequence of abnormal activation of gp130, transgenic mice having continuously activated gp130 were created. This was carried out by mating mice from interleukin 6 (IL-6) and IL-6 receptor (IL-6R) transgenic lines. Offspring overexpressing both IL-6 and IL-6R showed constitutive tyrosine phosphorylation of gp130 and a downstream signaling molecule, acute phase response factor/signal transducer and activator of transcription 3. Surprisingly, the distinguishing feature of such offspring was hypertrophy of ventricular myocardium and consequent thickened ventricular walls of the heart, where gp130 is also expressed, in adulthood. Transgenic mice overexpressing either IL-6 or IL-6R alone did not show detectable myocardial abnormalities. Neonatal heart muscle cells from normal mice, when cultured in vitro, enlarged in response to a combination of IL-6 and a soluble form of IL-6R. The results suggest that activation of the gp130 signaling pathways leads to cardiac hypertrophy and that these signals might be involved in physiological regulation of myocardium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Residue replacements were made at five positions (Arg-73, Asp-76, Tyr-87, Asp-106, and Asp-201) in the Halobacterium salinarium phototaxis receptor sensory rhodopsin I (SR-I) by site-specific mutagenesis. The sites were chosen for their correspondence in position to residues of functional importance in the homologous light-driven proton pump bacteriorhodopsin found in the same organism. This work identifies a residue in SR-I shown to be of vital importance to its attractant signaling function: Asp-201. The effect of the substitution with the isosteric asparagine is to convert the normally attractant signal of orange light stimulation to a repellent signal. In contrast, similar neutral substitution of the four other ionizable residues near the photoactive site allows essentially normal attractant and repellent phototaxis signaling. Wild-type two-photon repellent signaling by the receptor is intact in the Asp-201 mutant, genetically separating the wild-type attractant and repellent signal generation processes. A possible explanation and implications of the inverted signaling are discussed. Results of neutral residue substitution for Asp-76 confirm our previous evidence that proton transfer reactions involving this residue are not important to phototaxis but that Asp-76 functions as the Schiff base proton acceptor in proton translocation by transducer-free SR-I.