61 resultados para Thalamic Nucleus
Resumo:
The junction-associated protein zonula occludens-1 (ZO-1) is a member of a family of membrane-associated guanylate kinase homologues thought to be important in signal transduction at sites of cell-cell contact. We present evidence that under certain conditions of cell growth, ZO-1 can be detected in the nucleus. Two different antibodies against distinct portions of the ZO-1 polypeptide reveal nuclear staining in subconfluent, but not confluent, cell cultures. An exogenously expressed, epitope-tagged ZO-1 can also be detected in the nuclei of transfected cells. Nuclear accumulation can be stimulated at sites of wounding in cultured epithelial cells, and immunoperoxidase detection of ZO-1 in tissue sections of intestinal epithelial cells reveals nuclear labeling only along the outer tip of the villus. These results suggest that the nuclear localization of ZO-1 is inversely related to the extent and/or maturity of cell contact. Since cell-cell contacts are specialized sites for signaling pathways implicated in growth and differentiation, we suggest that the nuclear accumulation of ZO-1 may be relevant for its suggested role in membrane-associated guanylate kinase homologue signal transduction.
Resumo:
The cDNA corresponding to a fourth species of diacylglycerol (DG) kinase (EC 2.7.1.107) was isolated from cDNA libraries of rat retina and brain. This cDNA encoded a 929-aa, 104-kDa polypeptide termed DGK-IV. DGK-IV was different from previously identified mammalian DG kinase species, DGK-I, DGK-II, and DGK-III, in that it contained no EF-hand motifs but did contain four ankyrin-like repeats at the carboxyl terminus. These structural features of DGK-IV closely resemble the recently cloned, eye-specific DG kinase of Drosophila that is encoded by the retinal degeneration A (rdgA) gene. However, DGK-IV was expressed primarily in the thymus and brain with relatively low expression in the eye and intestine. Furthermore, the primary structure of the DGK-IV included a nuclear targeting motif, and immunocytochemical analysis revealed DGK-IV to localize in the nucleus of COS-7 cells transfected with the epitope-tagged cDNA, suggesting an involvement of DGK-IV in intranuclear processes.
Resumo:
Auditory cortical receptive field plasticity produced during behavioral learning may be considered to constitute "physiological memory" because it has major characteristics of behavioral memory: associativity, specificity, rapid acquisition, and long-term retention. To investigate basal forebrain mechanisms in receptive field plasticity, we paired a tone with stimulation of the nucleus basalis, the main subcortical source of cortical acetylcholine, in the adult guinea pig. Nucleus basalis stimulation produced electroencephalogram desynchronization that was blocked by systemic and cortical atropine. Paired tone/nucleus basalis stimulation, but not unpaired stimulation, induced receptive field plasticity similar to that produced by behavioral learning. Thus paired activation of the nucleus basalis is sufficient to induce receptive field plasticity, possibly via cholinergic actions in the cortex.
Resumo:
Effects of environmental stresses on the subcellular localization of PKN were investigated in NIH 3T3, BALB/c 3T3, and Rat-1 cells. The immunofluorescence of PKN resided prominently in the cytoplasmic region in nonstressed cells. When these cells were treated at 42 degrees C, there was a time-dependent decrease of the immunofluorescence of PKN in the cytoplasmic region that correlated with an increase within the nucleus as observed by confocal microscope. After incubation at 37 degrees C following beat shock, the immunofluorescence of PKN returned to the perinuclear and cytoplasmic regions from the nucleus. The nuclear translocation of PKN by heat shock was supported by the biochemical subcellular fractionation and immunoblotting. The nuclear localization of PKN was also observed when the cells were exposed to other stresses such as sodium arsenite and serum starvation. These results raise the possibility that there is a pathway mediating stress signals from the cytosol to the nucleus through PKN.
Resumo:
Short- and long-term ethanol exposures have been shown to alter cellular levels of cAMP, but little is known about the effects of ethanol on cAMP-dependent protein kinase (PKA). When cAMP levels increase, the catalytic subunit of PKA (C alpha) is released from the regulatory subunit, phosphorylates nearby proteins, and then translocates to the nucleus, where it regulates gene expression. Altered localization of C alpha would have profound effects on multiple cellular functions. Therefore, we investigated whether ethanol alters intracellular localization of C alpha. NG108-15 cells were incubated in the presence or absence of ethanol for as long as 48 h, and localization of PKA subunits was determined by immunocytochemistry. We found that ethanol exposure produced a significant translocation of C alpha from the Golgi area to the nucleus. C alpha remained in the nucleus as long as ethanol was present. There was no effect of ethanol on localization of the type I regulatory subunit of PKA. Ethanol also caused a 43% decrease in the amount of type I regulatory subunit but had no effect on the amount of C alpha as determined by Western blot. These data suggest that ethanol-induced translocation of C alpha to the nucleus may account, in part, for diverse changes in cellular function and gene expression produced by alcohol.
Resumo:
Hibernation patterns were monitored continuously for 2.5 years in female squirrels that were neurologically intact or in which the hypothalamic suprachiasmatic nucleus (SCN) was completely ablated (SCNx). The number of hibernation bouts in SCNx squirrels increased by 159%, total hibernation time increased by 58%, and periodic arousals from hibernation were 47% longer in SCNx than in control squirrels; the duration of individual torpor bouts was 2 days shorter and far more variable in SCNx than in control animals. Some SCNx squirrels cycled through bouts of torpor continuously for nearly 2 years. The SCN appears to be part of the mechanism that controls the duration of the hibernation season and the temporal structure of individual torpor bouts.
Resumo:
Patients suffering from schizophrenia display subtle cognitive abnormalities that may reflect a difficulty in rapidly coordinating the steps that occur in a variety of mental activities. Working interactively with the prefrontal cortex, the cerebellum may play a role in coordinating both motor and cognitive performance. This positron-emission tomography study suggests the presence of a prefrontal-thalamic-cerebellar network that is activated when normal subjects recall complex narrative material, but is dysfunctional in schizophrenic patients when they perform the same task. These results support a role for the cerebellum in cognitive functions and suggest that patients with schizophrenia may suffer from a "cognitive dysmetria" due to dysfunctional prefrontal-thalamic-cerebellar circuitry.
Resumo:
A new means of direct visualization of the early events of viral infection by selective fluorescence labeling of viral proteins coupled with digital imaging microscopy is reported. The early phases of viral infection have great importance for understanding viral replication and pathogenesis. Vesicular stomatitis virus, the best-studied rhabdovirus, is composed of an RNA genome of negative sense, five viral proteins, and membrane lipids derived from the host cell. The glycoprotein of vesicular stomatitis virus was labeled with fluorescein isothiocyanate, and the labeled virus was incubated with baby hamster kidney cells. After initiation of infection, the fluorescence of the labeled glycoprotein was first seen inside the cells in endocytic vesicles. The fluorescence progressively migrated to the nucleus of infected cells. After 1 h of infection, the virus glycoprotein was concentrated in the nucleus and could be recovered intact in a preparation of purified nuclei. These results suggest that uncoating of the viral RNA occurs close to the nuclear membrane, which would precede transcription of the leader RNA that enters the nucleus to shut off cellular RNA synthesis and DNA replication.
Resumo:
Xeroderma pigmentosum type G (XPG) is a human genetic disease exhibiting extreme sensitivity to sunlight. XPG patients are defective XPG endonuclease, which is an enzyme essential for DNA repair of the major kinds of solar ultraviolet (UV)-induced DNA damages. Here we describe a novel dynamics of this protein within the cell nucleus after UV irradiation of human cells. Using confocal microscopy, we have localized the immunofluorescent, antigenic signal of XPG protein to foci throughout the cell nucleus. Our biochemical studies also established that XPG protein forms a tight association with nuclear structure(s). In human skin fibroblast cells, the number of XPG foci decreased within 2 h after UV irradiation, whereas total nuclear XPG fluorescence intensity remained constant, suggesting redistribution of XPG from a limited number of nuclear foci to the nucleus overall. Within 8 h after UV, most XPG antigenic signal was found as foci. Using beta-galactosidase-XPG fusion constructs (beta-gal-XPG) transfected into HeLa cells, we have identified a single region of XPG that is evidently responsible both for foci formation and for the UV dynamic response. The fusion protein carrying the C terminus of XPG (amino acids 1146-1185) localized beta-gal specific antigenic signal to foci and to the nucleolus regions. After UV irradiation, antigenic beta-gal translocated reversibly from the subnuclear structures to the whole nucleus with kinetics very similar to the movements of XPG protein. These findings lead us to propose a model in which distribution of XPG protein may regulate the rate of DNA repair within transcriptionally active and inactive compartments of the cell nucleus.
Resumo:
Rna1p is the GTPase activating enzyme for Ran/TC4, a Ras-like GTPase necessary for nuclear/cytosolic exchange. Although most wild-type Rna1p is located in the cytosol, we found that the vast majority of the mutant Rna1-1p and, under appropriate physiological conditions, a small portion of the wild-type Rna1p cofractionate with yeast nuclei. Subnuclear fractionation studies show that most of the Rna1p is tightly associated with nuclear components, and that a portion of the active protein can be solubilized by treatments that fail to solubilize inactive Rna1-1p. To learn the precise nuclear locations of the Rna1 proteins, we studied their subcellular distributions in HeLa cells. By indirect immuno-fluorescence we show that wild-type Rna1p has three subcellular locations. The majority of the protein is distributed throughout the cytosol, but a portion of the protein is nucleus-associated, located at both the cytosolic surface and within the nucleoplasm. Mutant Rna1-1p is found at the outer nuclear surface and in the cytosol. We propose that a small pool of the wild-type Rna1p is located in the nuclear interior, supporting the model that the same components of the Ran/TC4 GTPase cycle exist on both sides of the nuclear membrane.
Resumo:
The nucleus accumbens is considered a critical target of the action of drugs of abuse. In this nucleus a "shell" and a "core" have been distinguished on the basis of anatomical and histochemical criteria. The present study investigated the effect in freely moving rats of intravenous cocaine, amphetamine, and morphine on extracellular dopamine concentrations in the nucleus accumbens shell and core by means of microdialysis with vertically implanted concentric probes. Doses selected were in the range of those known to sustain drug self-administration in rats. Morphine, at 0.2 and 0.4 mg/kg, and cocaine, at 0.5 mg/kg, increased extracellular dopamine selectivity in the shell. Higher doses of cocaine (1.0 mg/kg) and the lowest dose of amphetamine tested (0.125 mg/kg) increased extracellular dopamine both in the shell and in the core, but the effect was significantly more pronounced in the shell compared with the core. Only the highest dose of amphetamine (0.250 mg/kg) increased extracellular dopamine in the shell and in the core to a similar extent. The present results provide in vivo neurochemical evidence for a functional compartmentation within the nucleus accumbens and for a preferential effect of psychostimulants and morphine in the shell of the nucleus accumbens at doses known to sustain intravenous drug self-administration.
Resumo:
Seasonal changes of daylength (photoperiod) affect the expression of hormonal and behavioral circadian rhythms in a variety of organisms. In mammals, such effects might reflect photoperiodic changes in the circadian pace-making system [located in the suprachiasmatic nucleus (SCN) of the hypothalamus] that governs these rhythms, but to date no functionally relevant, intrinsic property of the SCN has been shown to be photoperiod dependent. We have analyzed the temporal regulation of light-induced c-fos gene expression in the SCN of rats maintained in long or short photoperiods. Both in situ hybridization and immunohistochemical assays show that the endogenous circadian rhythm of light responsiveness in the SCN is altered by photoperiod, with the duration of the photosensitive subjective night under the short photoperiod 5-6 h longer than under the long photoperiod. Our results provide evidence that a functional property of the SCN is altered by photoperiod and suggest that the nucleus is involved in photoperiodic time measurement.
Resumo:
In the rat suprachiasmatic nucleus slice culture, circadian rhythms in the release of arginine vasopressin and vasoactive intestinal polypeptide were measured simultaneously and longitudinally. The phase relationship between the two peptide rhythms was relatively constant in the culture without a treatment of antimitotic drugs but became diverse by an introduction of antimitotics, which is generally used to reduce the number of glial cells. By monitoring the two rhythms continuously for 6 days, different periods were detected in culture with the antimitotic treatment. Furthermore, N-methyl-D-aspartate shifted the phase of the two peptide rhythms in the same culture differently. These results indicate that the arginine vasopressin and vasoactive intestinal polypeptide release are under control of different circadian oscillators.
Resumo:
Electrophysiological and neuroanatomical methods were used to determine the extent to which neonatal forelimb removal altered the organization of the cuneate nucleus and representations of the fore- and hindlimbs in the primary somatosensory cortex of adult rats. Neonatal forelimb removal resulted in invasion of the cuneate nucleus by sciatic nerve primary afferents and development of cuneothalamic projection neurons with split receptive fields that included both the hindlimb and forelimb stump. Mapping in the primary somatosensory cortex of the neonatally manipulated adult rats demonstrated abnormalities, but the major change observed in the cuneate nucleus was demonstrable at only a few (5%) cortical recording sites in the remaining stump representation and there were none at all in the hindlimb representation. These results suggest that lesion-induced brainstem reorganization may be functionally suppressed at either the thalamic or cortical level.