71 resultados para TOLL-LIKE RECEPTOR-4
Resumo:
Inositol 1,4,5-tris-phosphate (IP3) binding to its receptors (IP3R) in the endoplasmic reticulum (ER) activates Ca2+ release from the ER lumen to the cytoplasm, generating complex cytoplasmic Ca2+ concentration signals including temporal oscillations and propagating waves. IP3-mediated Ca2+ release is also controlled by cytoplasmic Ca2+ concentration with both positive and negative feedback. Single-channel properties of the IP3R in its native ER membrane were investigated by patch clamp electrophysiology of isolated Xenopus oocyte nuclei to determine the dependencies of IP3R on cytoplasmic Ca2+ and IP3 concentrations under rigorously defined conditions. Instead of the expected narrow bell-shaped cytoplasmic free Ca2+ concentration ([Ca2+]i) response centered at ≈300 nM–1 μM, the open probability remained elevated (≈0.8) in the presence of saturating levels (10 μM) of IP3, even as [Ca2+]i was raised to high concentrations, displaying two distinct types of functional Ca2+ binding sites: activating sites with half-maximal activating [Ca2+]i (Kact) of 210 nM and Hill coefficient (Hact) ≈2; and inhibitory sites with half-maximal inhibitory [Ca2+]i (Kinh) of 54 μM and Hill coefficient (Hinh) ≈4. Lowering IP3 concentration was without effect on Ca2+ activation parameters or Hinh, but decreased Kinh with a functional half-maximal activating IP3 concentration (KIP3) of 50 nM and Hill coefficient (HIP3) of 4 for IP3. These results demonstrate that Ca2+ is a true receptor agonist, whereas the sole function of IP3 is to relieve Ca2+ inhibition of IP3R. Allosteric tuning of Ca2+ inhibition by IP3 enables the individual IP3R Ca2+ channel to respond in a graded fashion, which has implications for localized and global cytoplasmic Ca2+ concentration signaling and quantal Ca2+ release.
Resumo:
Retinoic acid (RA) exerts diverse biological effects in the control of cell growth in embryogenesis and oncogenesis. These effects of RA are thought to be mediated by the nuclear retinoid receptors. Mannose-6-phosphate (M6P)/insulin-like growth factor-II (IGF-II) receptor is a multifunctional membrane glycoprotein that is known to bind both M6P and IGF-II and function primarily in the binding and trafficking of lysosomal enzymes, the activation of transforming growth factor-β, and the degradation of IGF-II. M6P/IGF-II receptor has recently been implicated in fetal development and carcinogenesis. Despite the functional similarities between RA and the M6P/IGF-II receptor, no direct biochemical link has been established. Here, we show that the M6P/IGF-II receptor also binds RA with high affinity at a site that is distinct from those for M6P and IGF-II, as identified by a photoaffinity labeling technique. We also show that the binding of RA to the M6P/IGF-II receptor enhances the primary functions of this receptor. The biological consequence of the interaction appears to be the suppression of cell proliferation and/or induction of apoptosis. These findings suggest that the M6P/IGF-II receptor mediates a RA response pathway that is important in cell growth regulation. This discovery of the interaction of RA with the M6P/IGF-II receptor may have important implications for our understanding of the roles of RA and the M6P/IGF-II receptor in development, carcinogenesis, and lysosomal enzyme-related diseases.
Resumo:
Limitation of water loss and control of gas exchange is accomplished in plant leaves via stomatal guard cells. Stomata open in response to light when an increase in guard cell turgor is triggered by ions and water influx across the plasma membrane. Recent evidence demonstrating the existence of ATP-binding cassette proteins in plants led us to analyze the effect of compounds known for their ability to modulate ATP-sensitive potassium channels (K-ATP) in animal cells. By using epidermal strip bioassays and whole-cell patch-clamp experiments with Vicia faba guard cell protoplasts, we describe a pharmacological profile that is specific for the outward K+ channel and very similar to the one described for ATP-sensitive potassium channels in mammalian cells. Tolbutamide and glibenclamide induced stomatal opening in bioassays and in patch-clamp experiments, a specific inhibition of the outward K+ channel by these compounds was observed. Conversely, application of potassium channel openers such as cromakalim or RP49356 triggered stomatal closure. An apparent competition between sulfonylureas and potassium channel openers occurred in bioassays, and outward potassium currents, previously inhibited by glibenclamide, were partially recovered after application of cromakalim. By using an expressed sequence tag clone from an Arabidopsis thaliana homologue of the sulfonylurea receptor, a 7-kb transcript was detected by Northern blot analysis in guard cells and other tissues. Beside the molecular evidence recently obtained for the expression of ATP-binding cassette protein transcripts in plants, these results give pharmacological support to the presence of a sulfonylurea-receptor-like protein in the guard-cell plasma membrane tightly involved in the outward potassium channel regulation during stomatal movements.
Resumo:
The ATM gene is mutated in the syndrome of ataxia telangiectasia (AT), associated with neurologic dysfunction, growth abnormalities, and extreme radiosensitivity. Insulin-like growth factor-I receptor (IGF-IR) is a cell surface receptor with tyrosine kinase activity that can mediate mitogenesis, cell transformation, and inhibition of apoptosis. We report here that AT cells express low levels of IGF-IR and show decreased IGF-IR promoter activity compared with wild-type cells. Complementation of AT cells with the ATM cDNA results in increased IGF-IR promoter activity and elevated IGF-IR levels, whereas expression in wild-type cells of a dominant negative fragment of ATM specifically reduces IGF-IR expression, results consistent with a role for ATM in regulating IGF-IR expression at the level of transcription. When expression of IGF-IR cDNA is forced in AT cells via a heterologous viral promoter, near normal radioresistance is conferred on the cells. Conversely, in ATM cells complemented with the ATM cDNA, specific inhibition of the IGF-IR pathway prevents correction of the radiosensitivity. Taken together, these results establish a fundamental link between ATM function and IGF-IR expression and suggest that reduced expression of IGF-IR contributes to the radiosensitivity of AT cells. In addition, because IGF-I plays a major role in human growth and metabolism and serves as a survival and differentiation factor for developing neuronal tissue, these results may provide a basis for understanding other aspects of the AT syndrome, including the growth abnormalities, insulin resistance, and neurodegeneration.
Resumo:
IL-4 is a pleiotropic immune cytokine secreted by activated TH2 cells that inhibits bone resorption both in vitro and in vivo. The cellular targets of IL-4 action as well as its intracellular mechanism of action remain to be determined. We show here that IL-4 inhibits receptor activator of NF-κB ligand-induced osteoclast differentiation through an action on osteoclast precursors that is independent of stromal cells. Interestingly, this inhibitory effect can be mimicked by both natural as well as synthetic peroxisome proliferator-activated receptor γ1 (PPARγ1) ligands and can be blocked by the irreversible PPARγ antagonist GW 9662. These findings suggest that the actions of IL-4 on osteoclast differentiation are mediated by PPARγ1, an interpretation strengthened by the observation that IL-4 can activate a PPARγ1-sensitive luciferase reporter gene in RAW264.7 cells. We also show that inhibitors of enzymes such as 12/15-lipoxygenase and the cyclooxygenases that produce known PPARγ1 ligands do not abrogate the IL-4 effect. These findings, together with the observation that bone marrow cells from 12/15-lipoxygenase-deficient mice retain sensitivity to IL-4, suggest that the cytokine may induce novel PPARγ1 ligands. Our results reveal that PPARγ1 plays an important role in the suppression of osteoclast formation by IL-4 and may explain the beneficial effects of the thiazolidinedione class of PPARγ1 ligands on bone loss in diabetic patients.
Resumo:
We isolated SN-HLPf (Sambucus nigra hevein-like fruit protein), a hevein-like chitin-binding protein, from mature elderberry fruits. Cloning of the corresponding gene demonstrated that SN-HLPf is synthesized as a chimeric precursor consisting of an N-terminal chitin-binding domain corresponding to the mature elderberry protein and an unrelated C-terminal domain. Sequence comparisons indicated that the N-terminal domain of this precursor has high sequence similarity with the N-terminal domain of class I PR-4 (pathogenesis-related) proteins, whereas the C terminus is most closely related to that of class V chitinases. On the basis of these sequence homologies the gene encoding SN-HLPf can be considered a hybrid between a PR-4 and a class V chitinase gene.
Resumo:
An extensive, highly diversified multigene family of novel immune-type receptor (nitr) genes has been defined in Danio rerio (zebrafish). The genes are predicted to encode type I transmembrane glycoproteins consisting of extracellular variable (V) and V-like C2 (V/C2) domains, a transmembrane region and a cytoplasmic tail. All of the genes examined encode immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic tail. Radiation hybrid panel mapping and analysis of a deletion mutant line (b240) indicate that a minimum of ≈40 nitr genes are contiguous in the genome and span ≈0.6 Mb near the top of zebrafish linkage group 7. One flanking region of the nitr gene complex shares conserved synteny with a region of mouse chromosome 7, which shares conserved synteny with human 19q13.3-q13.4 that encodes the leukocyte receptor cluster. Antibody-induced crosslinking of Nitrs that have been introduced into a human natural killer cell line inhibits the phosphorylation of mitogen-activated protein kinase that is triggered by natural killer-sensitive tumor target cells. Nitrs likely represent intermediates in the evolution of the leukocyte receptor cluster.
Resumo:
Adenosine and its endogenous precursor ATP are main components of the purinergic system that modulates cellular and tissue functions via specific adenosine and ATP receptors (P1 and P2 receptors), respectively. Although adenosine inhibits excitability and ATP functions as an excitatory transmitter in the central nervous system, little is known about the ability of P1 and P2 receptors to form new functional structures such as a heteromer to control the complex purinergic cascade. Here we have shown that Gi/o protein-coupled A1 adenosine receptor (A1R) and Gq protein-coupled P2Y1 receptor (P2Y1R) coimmunoprecipitate in cotransfected HEK293T cells, suggesting the oligomeric association between distinct G protein-coupled P1 and P2 receptors. A1R and P2Y2 receptor, but not A1R and dopamine D2 receptor, also were found to coimmunoprecipitate in cotransfected cells. A1R agonist and antagonist binding to cell membranes were reduced by coexpression of A1R and P2Y1R, whereas a potent P2Y1R agonist adenosine 5′-O-(2-thiotriphosphate) (ADPβS) revealed a significant potency to A1R binding only in the cotransfected cell membranes. Moreover, the A1R/P2Y1R coexpressed cells showed an ADPβS-dependent reduction of forskolin-evoked cAMP accumulation that was sensitive to pertussis toxin and A1R antagonist, indicating that ADPβS binds A1R and inhibits adenylyl cyclase activity via Gi/o proteins. Also, a high degree of A1R and P2Y1R colocalization was demonstrated in cotransfected cells by double immunofluorescence experiments with confocal laser microscopy. These results suggest that oligomeric association of A1R with P2Y1R generates A1R with P2Y1R-like agonistic pharmacology and provides a molecular mechanism for an increased diversity of purine signaling.
Resumo:
The cysteinyl leukotrienes (cys-LTs) LTC4, LTD4, and LTE4 are a class of peptide-conjugated lipids formed from arachidonic acid and released during activation of mast cells (MCs). We now report that human cord-blood-derived MCs (hMCs) express the CysLT1 receptor, which responds not only to inflammation-derived cys-LTs, but also to a pyrimidinergic ligand, UDP. hMCs express both CysLT1 protein and transcript, and respond to LTC4, LTD4, and UDP with concentration-dependent calcium fluxes, each of which is blocked by a competitive CysLT1 receptor antagonist, MK571. Stably transfected Chinese hamster ovary cells expressing the CysLT1 receptor also exhibit MK571-sensitive calcium flux to all three agonists. Both hMCs and CysLT1 transfectants stimulated with UDP are desensitized to LTC4, but only partially to LTD4. Priming of hMCs with IL-4 for 5 days enhances their sensitivity to each agonist, but preferentially lowers their threshold for activation by LTC4 and UDP (≈3 log10-fold shifts in dose-response for each agonist) over LTD4 (1.3 log10-fold shift), without altering CysLT1 receptor mRNA or surface protein expression, implying the likely induction of a second receptor with CysLT1-like dual ligand specificity. hMCs thus express the CysLT1 receptor, and possibly a closely related IL-4-inducible receptor, which mediate dual activation responses to cys-LTs and UDP, providing an apparent intersection linking the inflammatory and neurogenic elements of bronchial asthma.
Resumo:
The estrogen-related receptors (ERRα, ERRβ, and ERRγ) form a family of orphan nuclear receptors that share significant amino acid identity with the estrogen receptors, but for which physiologic roles remain largely unknown. By using a peptide sensor assay, we have identified the stilbenes diethylstilbestrol (DES), tamoxifen (TAM), and 4-hydroxytamoxifen (4-OHT) as high-affinity ligands for ERRγ. In direct binding assays, 4-OHT had a Kd value of 35 nM, and both DES and TAM displaced radiolabeled 4-OHT with Ki values of 870 nM. In cell-based assays, 4-OHT binding caused a dissociation of the complex between ERRγ and the steroid receptor coactivator-1, and led to an inhibition of the constitutive transcriptional activity of ERRγ. ERRα did not bind 4-OHT, but replacing a single amino acid predicted to be in the ERRα ligand-binding pocket with the corresponding ERRγ residue allowed high-affinity 4-OHT binding. These results demonstrate the existence of high-affinity ligands for the ERR family of orphan receptors, and identify 4-OHT as a molecule that can regulate the transcriptional activity of ERRγ.
Resumo:
Brn-4 is a member of the POU transcription factor family and is expressed in the central nervous system. In this study, we addressed whether Brn-4 regulates expression of the D1A dopamine receptor gene. We found a functional Brn-4 responsive element in the intron of this gene by means of cotransfection chloramphenical acetyltransferase assays. This region contains two consensus sequences for binding of POU factors. Gel mobility-shift assays using glutathione S-transferase-Brn-4 fusion protein indicated that Brn-4 binds to these sequences. Both these sites are essential for transactivation by Brn-4 because deletion of either significantly reduced this enhancer activity. In situ hybridization revealed colocalization of Brn-4 and D1A mRNAs at the level of a single neuron in the rat striatum where this dopamine receptor is most abundantly expressed. Gel mobility-supershift assay using rat striatal nuclear extract and Brn-4 antibody confirmed the presence of Brn-4 in this brain region and its ability to bind to its consensus sequences in the D1A gene. These data suggest a functional role for Brn-4 in the expression of the D1A dopamine receptor gene both in vitro and in vivo.
Resumo:
Graves disease is an autoimmune thyroid disease characterized by the presence of antibodies against the thyrotropin receptor (TSHR), which stimulate the thyroid to cause hyperthyroidism and/or goiter. By immunizing mice with fibroblasts transfected with both the human TSHR and a major histocompatibility complex class II molecule, but not by either alone, we have induced immune hyperthyroidism that has the major humoral and histological features of Graves disease: stimulating TSHR antibodies, thyrotropin binding inhibiting immunoglobulins, which are different from the stimulating TSHR antibodies, increased thyroid hormone levels, thyroid enlargement, thyrocyte hypercellularity, and thyrocyte intrusion into the follicular lumen. The results suggest that the aberrant expression of major histocompatibility complex class II molecules on cells that express a native form of the TSHR can result in the induction of functional anti-TSHR antibodies that stimulate the thyroid. They additionally suggest that the acquisition of antigen-presenting ability on a target cell containing the TSHR can activate T and B cells normally present in an animal and induce a disease with the major features of autoimmune Graves.
Resumo:
The insulin-like growth factor I receptor (IGF-I-R) plays a critical role in transformation events. It is highly overexpressed in most malignant tissues where it functions as an anti-apoptotic agent by enhancing cell survival. Tumor suppressor p53 is a nuclear transcription factor that blocks cell cycle progression and induces apoptosis. p53 is the most frequently mutated gene in human cancer. Cotransfection of Saos-2 (os-teosarcoma-derived cells) and RD (rhabdomyosarcoma-derived cells) cells with IGF-I-R promoter constructs driving luciferase reporter genes and with wild-type p53 expression vectors suppressed promoter activity in a dose-dependent manner. This effect of p53 is mediated at the level of transcription and it involves interaction with TBP, the TATA box-binding component of TFIID. On the other hand, three tumor-derived mutant forms of p53 (mut 143, mut 248, and mut 273) stimulated the activity of the IGF-I-R promoter and increased the levels of IGF-I-R/luciferase fusion mRNA. These results suggest that wild-type p53 has the potential to suppress the IGF-I-R promoter in the postmitotic, fully differentiated cell, thus resulting in low levels of receptor gene expression in adult tissues. Mutant versions of p53 protein, usually associated with malignant states, can derepress the IGF-I-R promoter, with ensuing mitogenic activation by locally produced or circulating IGFs.
Resumo:
The alpha-subunit of the trimeric G-protein complex specific for taste receptor cells of the tongue, alpha-gustducin, is described here to be also expressed in the stomach and intestine. The alpha-gustducin-containing cells were identified as brush cells that are scattered throughout the surface epithelium of the gut and share structural features of taste receptor cells of the tongue. These findings provide clues to the long-sought molecular and cellular basis for chemoreception in the gut.