59 resultados para TESTIS
Resumo:
Pancreatic polypeptide (PP) is produced in the islets of Langerhans and released in response to meals. It belongs to a family of peptides that also includes neuropeptide Y and peptide YY. In the present communication, we describe a rat receptor with high affinity for PP, therefore named PP1. Clones for the PP1 receptor were obtained by PCR using sequence information for the neuropeptide Y receptor Y1 from several species. The PP1 receptor has 46% overall amino acid sequence identity to the rat Y1 receptor and 56% identity in the transmembrane regions. The PP1 receptor displays a pharmacological profile that is distinct from previously described neuropeptide Y-family receptors. In competition with iodinated bovine PP, it binds rat PP with an affinity (K(i)) of 0.017 nM, while the affinities for peptide YY and neuropeptide Y are substantially lower with K(i) values of 162 and 192 nM, respectively. In stably transfected CHO cells, the PP1 receptor inhibits forskolin-stimulated cAMP synthesis. Northern blot hybridizations to a panel of mRNAs detected transcripts in testis and lung. A faint band was seen in colon and total brain. In contrast, the human receptor is expressed primarily in colon and small intestine. Whereas rat and human PP1 bind PP with the same affinity, the rat receptor has much lower affinity than its human ortholog for peptide YY and neuropeptide Y. Interestingly, the amino acid sequence identity between rat and human PP1 is only 75%. Thus, the sequence, the tissue distribution, and the binding profile of the PP1 receptor differ considerably between rat and human.
Resumo:
Hsubc9, a human gene encoding a ubiquitin-conjugating enzyme, has been cloned. The 18-kDa HsUbc9 protein is homologous to the ubiquitin-conjugating enzymes Hus5 of Schizosaccharomyces pombe and Ubc9 of Saccharomyces cerevisiae. The Hsubc9 gene complements a ubc9 mutation of S. cerevisiae. It has been mapped to chromosome 16p13.3 and is expressed in many human tissues, with the highest levels in testis and thymus. According to the Ga14 two-hybrid system analysis, HsUbc9 protein interacts with human recombination protein Rad51. A mouse homolog, Mmubc9, encodes an amino acid sequence that is identical to the human protein. In mouse spermatocytes, MmUbc9 protein, like Rad51 protein, localizes in synaptonemal complexes, which suggests that Ubc9 protein plays a regulatory role in meiosis.
Resumo:
We recently isolated human cDNA fragments that render MCF-7 breast cancer cells resistant to cell death caused by Pseudomonas exotoxin, Pseudomonas exotoxin-derived immunotoxins, diphtheria toxin, and tumor necrosis factor. We report here that one of these fragments is an antisense fragment of a gene homologous to the essential yeast chromosome segregation gene CSE1. Cloning and analysis of the full-length cDNA of the human CSE1 homologue, which we name CAS for cellular apoptosis susceptibility gene, reveals a protein coding region with similar length (971 amino acids for CAS, 960 amino acids for CSE1) and 59% overall protein homology to the yeast CSE1 protein. The conservation of this gene indicates it has an important function in human cells consistent with the essential role of CSE1 in yeast. CAS is highly expressed in human tumor cell lines and in human testis and fetal liver, tissues that contain actively dividing cells. Furthermore, CAS expression increases when resting human fibroblasts are induced to proliferate and decreases when they are growth-arrested. Thus, CAS appears to play an important role in both toxin and tumor necrosis factor-mediated cell death, as well as in cell proliferation.
Resumo:
In many vertebrate and invertebrate cells, inositol 1,4,5-trisphospate production induces a biphasic Ca2+ signal. Mobilization of Ca2+ from internal stores drives the initial burst. The second phase, referred to as store-operated Ca2+ entry (formerly capacitative Ca2+ entry), occurs when depletion of intracellular Ca2+ pools activates a non-voltage-sensitive plasma membrane Ca2+ conductance. Despite the prevalence of store-operated Ca2+ entry, no vertebrate channel responsible for store-operated Ca2+ entry has been reported. trp (transient receptor potential), a Drosophila gene required in phototransduction, encodes the only known candidate for such a channel throughout phylogeny. In this report, we describe the molecular characterization of a human homolog of trp, TRPC1. TRPC1 (transient receptor potential channel-related protein 1) was 40% identical to Drosophila TRP over most of the protein and lacked the charged residues in the S4 transmembrane region proposed to be required for the voltage sensor in many voltage-gated ion channels. TRPC1 was expressed at the highest levels in the fetal brain and in the adult heart, brain, testis, and ovaries. Evidence is also presented that TRPC1 represents the archetype of a family of related human proteins.
Resumo:
Myosin VIIa is a newly identified member of the myosin superfamily of actin-based motors. Recently, the myosin VIIa gene was identified as the gene defective in shaker-1, a recessive deafness in mice [Gibson, F., Walsh, J., Mburu, P., Varela, A., Brown, K.A., Antonio, M., Beisel, K.W., Steel, K.P. & Brown, S.D.M. (1995) Nature (London) 374, 62-64], and in human Usher syndrome type 1B, an inherited disease characterized by congenital deafness, vestibular dysfunction, and retinitis pigmentosa [Weil, D., Blanchard, S., Kaplan, J., Guilford, P., Gibson, F., Walsh, J., Mburu, P., Varela, A., Levilliers, J., Weston, M.D., Kelley, P.M., Kimberling, W.J., Wagenaar, M., Levi-Acobas, F., Larget-Piet, D., Munnich, A., Steel, K.P., Brown, S.D.M. & Petit, C. (1995) Nature (London) 374, 60-61]. To understand the normal function of myosin VIIa and how it could cause these disease phenotypes when defective, we generated antibodies specific to the tail portion of this unconventional myosin. We found that myosin VIIa was expressed in cochlea, retina, testis, lung, and kidney. In cochlea, myosin VIIa expression was restricted to the inner and outer hair cells, where it was found in the apical stereocilia as well as the cytoplasm. In the eye, myosin VIIa was expressed by the retinal pigmented epithelial cells, where it was enriched within the apical actin-rich domain of this cell type. The cell-specific localization of myosin VIIa suggests that the blindness and deafness associated with Usher syndrome is due to lack of proper myosin VIIa function within the cochlear hair cells and the retinal pigmented epithelial cells.
Resumo:
A DNA-binding factor with high affinity and specificity for the [Leu5]enkephalin-encoding sequences in the prodynorphin and proenkephalin genes has been characterized. The factor has the highest affinity for the [Leu5]-enkephalin-encoding sequence in the dynorphin B-encoding region of the prodynorphin gene, has relatively high affinity for other [Leu5]enkephalin-encoding sequences in the prodynorphin and proenkephalin genes, but has no apparent affinity for similar DNA sequences coding for [Met5]-enkephalin in the prodynorphin or proopiomelanocortin genes. The factor has been named [Leu5]enkephalin-encoding sequence DNA-binding factor (LEF). LEF has a nuclear localization and is composed of three subunits of about 60, 70, and 95 kDa, respectively. The highest levels were observed in rat testis, cerebellum, and spleen and were generally higher in late embryonal compared to newborn or adult animals. LEF activity was also recorded in human clonal tumor cell lines. LEF inhibited the transcription of reporter genes in artificial gene constructs where a [Leu5]enkephalin-encoding DNA fragment had been inserted between the transcription initiation site and the coding region of the reporter genes. These observations suggest that the [Leu5]enkephalin-encoding sequences in the prodynorphin and proenkephalin genes also have regulatory functions realized through interaction with a specific DNA-binding factor.
Resumo:
Transcription of the late genes of simian virus 40 (SV40) is repressed during the early phase of the lytic cycle of infection of binding of cellular factors, called IBP-s, to the SV40 late promoter; repression is relieved after the onset of viral DNA replication by titration of these repressors. Preliminary data indicated that one of the major components of IBP-s was human estrogen-related receptor 1 (hERR1). We show here that several members of the steroid/thyroid hormone receptor superfamily, including testis receptor 2, thyroid receptor alpha 1 in combination with retinoid X receptor alpha, chicken ovalbumin upstream promoter transcription factors 1 and 2 (COUP-TF1 and COUP-TF2), as well as hERR1, possess the properties of IBP-s. These receptors bind specifically to hormone receptor binding sites present in the SV40 major late promoter. Recombinant COUP-TF1 specifically represses transcription from the SV40 major late promoter in a cell-free transcription system. Expression of COUP-TF1, COUP-TF2, or hERR1 in monkey cells results in repression of the SV40 late promoter, but not the early promoter, in the absence of the virally encoded large tumor antigen. Overexpression of COUP-TF1 leads to a delay in the early-to-late switch in SV40 gene expression during the lytic cycle of infection. Thus, members of this superfamily can play major direct roles in regulating expression of SV40. Possibly, natural or synthetic ligands to these receptors can serve as antiviral drugs. Our findings also provide the basis for the development of assays to screen for the ligands to testis receptor 2 and hERR1.
Resumo:
H1 histones bind to the linker DNA between nucleosome core particles and facilitate the folding of chromatin into a 30-nm fiber. Mice contain at least seven nonallelic subtypes of H1, including the somatic variants H1a through H1e, the testis-specific variant H1t, and the replacement linker histone H1(0). H1(0) accumulates in terminally differentiating cells from many lineages, at about the time when the cells cease dividing. To investigate the role of H1(0) in development, we have disrupted the single-copy H1(0) gene by homologous recombination in mouse embryonic stem cells. Mice homozygous for the mutation and completely lacking H1(0) mRNA and protein grew and reproduced normally and exhibited no anatomic or histologic abnormalities. Examination of tissues in which H1(0) is normally present at high levels also failed to reveal any abnormality in cell division patterns. Chromatin from H1(0)-deficient animals showed no significant change in the relative proportions of the other H1 subtypes or in the stoichiometry between linker histones and nucleosomes, suggesting that the other H1 histones can compensate for the deficiency in H1(0) by occupying sites that normally contain H1(0). Our results indicate that despite the unique properties and expression pattern of H1(0), its function is dispensable for normal mouse development.
Resumo:
The expression of the cell adhesion molecules ICAM-1, ICAM-2, and VCAM-1 and the secretion of the cytokine interleukin 6 have been measured in mouse Sertoli cells cultured in vitro. Cytometric analysis revealed that, in basal conditions, low levels of ICAM-1 and VCAM-1 were present on the surface of the cells, whereas treatment with interleukin 1, tumor necrosis factor alpha, lipopolysaccharide, or interferon gamma induced, with different kinetics, increases in their expression. ICAM-2 was not detectable in basal conditions, nor was it inducible. Electron microscopic analysis and binding experiments using 51Cr-labeled lymphocytes demonstrated that increased expression of ICAM-1 and VCAM-1 on the surface of Sertoli cells, induced by inflammatory mediators, determines an augmented adhesion between the two cell types. The same stimuli, with the exception of interferon gamma, produced a rapid and remarkable increment of interleukin 6 production by Sertoli cells. These results suggest the presence of both direct and paracrine mechanisms of interaction between Sertoli and immune-competent cells, possibly involved in the control of immune reactions in the testis. Such mechanisms are of interest for the understanding of autoimmune pathologies of the testis and, if confirmed in humans, they could be involved in the sexual transmission of human immunodeficiency virus infection.
Resumo:
Steroidogenic acute regulatory protein (StAR) appears to mediate the rapid increase in pregnenolone synthesis stimulated by tropic hormones. cDNAs encoding StAR were isolated from a human adrenal cortex library. Human StAR, coexpressed in COS-1 cells with cytochrome P450scc and adrenodoxin, increased pregnenolone synthesis > 4-fold. A major StAR transcript of 1.6 kb and less abundant transcripts of 4.4 and 7.5 kb were detected in ovary and testis. Kidney had a lower amount of the 1.6-kb message. StAR mRNA was not detected in other tissues including placenta. Treatment of granulosa cells with 8-bromo-adenosine 3',5'-cyclic monophosphate for 24 hr increased StAR mRNA 3-fold or more. The structural gene encoding StAR was mapped using somatic cell hybrid mapping panels to chromosome 8p. Fluorescence in situ hybridization placed the StAR locus in the region 8p11.2. A StAR pseudogene was mapped to chromosome 13. We conclude that StAR expression is restricted to tissues that carry out mitochondrial sterol oxidations subject to acute regulation by cAMP and that StAR mRNA levels are regulated by cAMP.
Resumo:
A human gene with strong homology to the MAGE gene family located in Xq27-qter has been isolated by using exon-trapping of cosmids in the Xp21.3 region. We have mapped and sequenced cDNA and genomic clones corresponding to this gene, MAGE-Xp, and shown that the last exon contains the open reading frame and is present in a minimum of five copies in a 30-kb interval. MAGE-Xp is expressed only in testis and, unlike the Xq27-qter MAGE genes, it is not expressed in any of 12 different tumor tissues tested. However, the gene and predicted protein structure are conserved, suggesting a similar function. MAGE-Xp is located in the 160-kb critical interval defined for the locus involved in sex determination within Xp21 and is 50 kb distal to the DAX-1 gene, which is responsible for X-chromosome-linked adrenal hypoplasia congenita.
Resumo:
Members of the winged helix/forkhead family of transcription factors are believed to play a role in cell-specific gene expression. A cDNA encoding a member of this family of proteins, termed hepatocyte nuclear factor/forkhead homologue 4 (HFH-4), has been isolated from rat lung and rat testis cDNA libraries. This cDNA contains an open reading frame of 421 amino acids with a conserved DNA binding domain and several potential transactivating regions. During murine lung development, a single species of HFH-4-specific transcript (2.4 kb long) is first detected precisely at the start of the late pseudoglandular stage (embryonic day 14.5) and, by in situ hybridization, is specifically localized to the proximal pulmonary epithelium. The unique temporal and spatial pattern of HFH-4 gene expression in the developing lung defines this protein as a marker for the initiation of bronchial epithelial cell differentiation and suggests that it may play an important role in cell fate determination during lung development. In addition to expression in the pulmonary epithelium, RNA blot analysis reveals 2.4-kb HFH-4 transcripts in the testis and oviduct. By using mice with genetic defects in spermatogenesis, HFH-4 expression in the testis is found to be associated with the appearance of haploid germ cells and in situ hybridization studies indicate that HFH-4 expression is confined to stages I-VII of spermatogenesis. This pattern of HFH-4 gene expression during the early stages of differentiation of haploid germ cells suggests that HFH-4 may play a role in regulating stage-specific gene expression and cell-fate determination during lung development and in spermatogenesis.
Resumo:
A large family of genes encodes proteins with RNA recognition motifs that are presumed to bind RNA and to function in posttranscriptional regulation. Neural-specific members of this family include elav, a gene required for correct differentiation and maintenance of neurons in Drosophila melanogaster, and a related gene, HuD, which is expressed in human neuronal cells. I have identified genes related to elav and HuD in Xenopus laevis, zebrafish, and mouse that define a family of four closely related vertebrate elav-like genes (elrA, elrB, elrC, and elrD) in fish, frogs, and mammals. In addition to protein sequence conservation, a segment of the 3'-untranslated sequence of elrD is also conserved, implying a functional role in elrD expression. In adult frogs, elrC and elrD are exclusively expressed in the brain, whereas elrB is expressed in brain, testis, and ovary. During Xenopus development, elrC and elrD RNAs are detected by late gastrula and late neurula stages, respectively, whereas a nervous system-specific elrB RNA species is expressed by early tadpole stage. Additional elrB transcripts are detected in the ovary and early embryo, demonstrating a maternal supply of mRNA and possibly of protein. These expression patterns suggest a role for different elav-like genes in early development and neuronal differentiation. Surprisingly, elrA is expressed in all adult tissues tested and at all times during development. Thus, the widely expressed elrA is expected to have a related function in all cells.
Resumo:
Aberrant expression of transforming growth factor beta 1 (TGF-beta 1) has been implicated in a number of disease processes, particularly those involving fibrotic and inflammatory lesions. To determine the in vivo effects of overexpression of TGF-beta 1 on the function and structure of hepatic as well as extrahepatic tissues, transgenic mice were generated containing a fusion gene (Alb/TGF-beta 1) consisting of modified porcine TGF-beta 1 cDNA under the control of the regulatory elements of the mouse albumin gene. Five transgenic lines were developed, all of which expressed the Alb/TGF-beta 1 transgene selectively in hepatocytes. The transgenic line 25 expressing the highest level of the transgene in the liver also had high (> 10-fold over control) plasma levels of TGF-beta 1. Hepatic fibrosis and apoptotic death of hepatocytes developed in all the transgenic lines but was more pronounced in line 25. The fibrotic process was characterized by deposition of collagen around individual hepatocytes and within the space of Disse in a radiating linear pattern. Several extrahepatic lesions developed in line 25, including glomerulonephritis and renal failure, arteritis and myocarditis, as well as atrophic changes in pancreas and testis. The results from this transgenic model strongly support the proposed etiological role for TGF-beta 1 in a variety of fibrotic and inflammatory disorders. The transgenic model may also provide an appropriate paradigm for testing therapeutic interventions aimed at neutralizing the detrimental effects of this important cytokine.