97 resultados para Sequences (Liturgy)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three different base paired stems form between U2 and U6 snRNA over the course of the mRNA splicing reaction (helices I, II and III). One possible function of U2/U6 helix II is to facilitate subsequent U2/U6 helix I and III interactions, which participate directly in catalysis. Using an in vitro trans-splicing assay, we investigated the function of sequences located just upstream from the branch site (BS). We find that these upstream sequences are essential for stable binding of U2 to the branch region, and for U2/U6 helix II formation, but not for initial U2/BS pairing. We also show that non-functional upstream sequences cause U2 snRNA stem–loop IIa to be exposed to dimethylsulfate modification, perhaps reflecting a U2 snRNA conformational change and/or loss of SF3b proteins. Our data suggest that initial binding of U2 snRNP to the BS region must be stabilized by an interaction with upstream sequences before U2/U6 helix II can form or U2 stem–loop IIa can participate in spliceosome assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of a human thyroid serial analysis of gene expression (SAGE) library shows the presence of an abundant SAGE tag corresponding to the mRNA of thyroglobulin (TG). Additional, less abundant tags are present that can not be linked to any other known gene, but show considerable homology to the wild-type TG tag. To determine whether these tags represent TG mRNA molecules with alternative cleavage, 3′-RACE clones were sequenced. The results show that the three putative TG SAGE tags can be attributed to TG transcripts and reflect the use of alternative polyadenylation cleavage sites downstream of a single polyadenylation signal in vivo. By screening more than 300 000 sequences corresponding to human, mouse and rat transcripts for this phenomenon we show that a considerable percentage of mRNA transcripts (44% human, 22% mouse and 22% rat) show cleavage site heterogeneity. When analyzing SAGE-generated expression data, this phenomenon should be considered, since, according to our calculations, 2.8% of human transcripts show two or more different SAGE tags corresponding to a single gene because of alternative cleavage site selection. Both experimental and in silico data show that the selection of the specific cleavage site for poly(A) addition using a given polyadenylation signal is more variable than was previously thought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drosophila Armadillo and its mammalian homologue β-catenin are scaffolding proteins involved in the assembly of multiprotein complexes with diverse biological roles. They mediate adherens junction assembly, thus determining tissue architecture, and also transduce Wnt/Wingless intercellular signals, which regulate embryonic cell fates and, if inappropriately activated, contribute to tumorigenesis. To learn more about Armadillo/β-catenin's scaffolding function, we examined in detail its interaction with one of its protein targets, cadherin. We utilized two assay systems: the yeast two-hybrid system to study cadherin binding in the absence of Armadillo/β-catenin's other protein partners, and mammalian cells where interactions were assessed in their presence. We found that segments of the cadherin cytoplasmic tail as small as 23 amino acids bind Armadillo or β-catenin in yeast, whereas a slightly longer region is required for binding in mammalian cells. We used mutagenesis to identify critical amino acids required for cadherin interaction with Armadillo/β-catenin. Expression of such short cadherin sequences in mammalian cells did not affect adherens junctions but effectively inhibited β-catenin–mediated signaling. This suggests that the interaction between β-catenin and T cell factor family transcription factors is a sensitive target for disruption, making the use of analogues of these cadherin derivatives a potentially useful means to suppress tumor progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Narrow spectrum antimicrobial activity has been designed to reduce the expression of two essential genes, one coding for the protein subunit of RNase P (C5 protein) and one for gyrase (gyrase A). In both cases, external guide sequences (EGS) have been designed to complex with either mRNA. Using the EGS technology, the level of microbial viability is reduced to less than 10% of the wild-type strain. The EGSs are additive when used together and depend on the number of nucleotides paired when attacking gyrase A mRNA. In the case of gyrase A, three nucleotides unpaired out of a 15-mer EGS still favor complete inhibition by the EGS but five unpaired nucleotides do not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The terminal regions (last 20 kb) of Saccharomyces cerevisiae chromosomes universally contain blocks of precise sequence similarity to other chromosome terminal regions. The left and right terminal regions are distinct in the sense that the sequence similarities between them are reverse complements. Direct sequence similarity occurs between the left terminal regions and also between the right terminal regions, but not between any left ends and right ends. With minor exceptions the relationships range from 80% to 100% match within blocks. The regions of similarity are composites of familiar and unfamiliar repeated sequences as well as what could be considered “single-copy” (or better “two-copy”) sequences. All terminal regions were compared with all other chromosomes, forward and reverse complement, and 768 comparisons are diagrammed. It appears there has been an extensive history of sequence exchange or copying between terminal regions. The subtelomeric sequences fall into two classes. Seventeen of the chromosome ends terminate with the Y′ repeat, while 15 end with the 800-nt “X2” repeats just adjacent to the telomerase simple repeats. The just-subterminal repeats are very similar to each other except that chromosome 1 right end is more divergent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple phylogenetic tests were applied to a large data set of nucleotide sequences from two nuclear genes and a region of the mitochondrial genome of Trypanosoma cruzi, the agent of Chagas' disease. Incongruent gene genealogies manifest genetic exchange among distantly related lineages of T. cruzi. Two widely distributed isoenzyme types of T. cruzi are hybrids, their genetic composition being the likely result of genetic exchange between two distantly related lineages. The data show that the reference strain for the T. cruzi genome project (CL Brener) is a hybrid. Well-supported gene genealogies show that mitochondrial and nuclear gene sequences from T. cruzi cluster, respectively, in three or four distinct clades that do not fully correspond to the two previously defined major lineages of T. cruzi. There is clear genetic differentiation among the major groups of sequences, but genetic diversity within each major group is low. We estimate that the major extant lineages of T. cruzi have diverged during the Miocene or early Pliocene (3–16 million years ago).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amino-terminal signal sequences target nascent secretory and membrane proteins to the endoplasmic reticulum for translocation. Subsequent interactions between the signal sequence and components of the translocation machinery at the endoplasmic reticulum are thought to be important for the productive engagement of the translocon by the ribosome-nascent chain complex. However, it is not clear whether all signal sequences carry out these posttargeting steps identically, or if there are differences in the interactions directed by one signal sequence versus another. In this study, we find substantial differences in the ability of signal sequences from different substrates to mediate closure of the ribosome–translocon junction early in translocation. We also show that these differences in some cases necessitate functional coordination between the signal sequence and mature domain for faithful translocation. Accordingly, the translocation of some proteins is sensitive to replacement of their signal sequences. In a particularly dramatic example, the topology of the prion protein was found to depend highly on the choice of signal sequence used to direct its translocation. Taken together, our results reveal an unanticipated degree of substrate-specific functionality encoded in N-terminal signal sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rearrangements between tandem sequence homologies of various lengths are a major source of genomic change and can be deleterious to the organism. These rearrangements can result in either deletion or duplication of genetic material flanked by direct sequence repeats. Molecular genetic analysis of repetitive sequence instability in Escherichia coli has provided several clues to the underlying mechanisms of these rearrangements. We present evidence for three mechanisms of RecA-independent sequence rearrangements: simple replication slippage, sister-chromosome exchange-associated slippage, and single-strand annealing. We discuss the constraints of these mechanisms and contrast their properties with RecA-dependent homologous recombination. Replication plays a critical role in the two slipped misalignment mechanisms, and difficulties in replication appear to trigger rearrangements via all these mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic instability can be induced by unusual DNA structures and sequence repeats. We have previously demonstrated that a large palindrome in the mouse germ line derived from transgene integration is extremely unstable and undergoes stabilizing rearrangements at high frequency, often through deletions that produce asymmetry. We have now characterized other palindrome rearrangements that arise from complex homologous recombination events. The structure of the recombinants is consistent with homologous recombination occurring by a noncrossover gene conversion mechanism in which a break induced in the palindrome promotes homologous strand invasion and repair synthesis, similar to mitotic break repair events reported in mammalian cells. Some of the homologous recombination events led to expansion in the size of the palindromic locus, which in the extreme case more than doubled the number of repeats. These results may have implications for instability observed at naturally occurring palindromic or quasipalindromic sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The free energy difference between complexes of the restriction nuclease EcoRI with nonspecific DNA and with the enzyme's recognition sequence is linearly dependent on the water chemical potential of the solution, set using several very different solutes, ranging from glycine and glycerol to triethylene glycol and sucrose. This osmotic dependence indicates that the nonspecific complex sequesters some 110 waters more than the specific complex with the recognition sequence. The insensitivity of the difference in number of waters released to the solute identity further indicates that this water is sequestered in a space that is sterically inaccessible to solutes, most likely at the protein-DNA interface of the nonspecific complex. Calculations based on the structure of the specific complex suggest that the apposing DNA and protein surfaces in the nonspecific complex retain approximately a full hydration layer of water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phylogenetic analysis of ribosomal RNA sequences obtained from uncultivated organisms of a hot spring in Yellowstone National Park reveals several novel groups of Archaea, many of which diverged from the crenarchaeal line of descent prior to previously characterized members of that kingdom. Universal phylogenetic trees constructed with the addition of these sequences indicate monophyly of Archaea, with modest bootstrap support. The data also show a specific relationship between low-temperature marine Archaea and some hot spring Archaea. Two of the environmental sequences are enigmatic: depending upon the data set and analytical method used, these sequences branch deeply within the Crenarchaeota, below the bifurcation between Crenarchaeota and Euryarchaeota, or even as the sister group to Eukaryotes. If additional data confirm either of the latter two placements, then the organisms represented by these ribosomal RNA sequences would merit recognition as a new kingdom, provisionally named "Korarchaeota."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let a(x) be a real function with a regular growth as x --> infinity. [The precise technical assumption is that a(x) belongs to a Hardy field.] We establish sufficient growth conditions on a(x) so that the sequence ([a(n)])(infinity)(n=1) is a good averaging sequence in L2 for the pointwise ergodic theorem. A sequence (an) of positive integers is a good averaging sequence in L2 for the pointwise ergodic theorem if in any dynamical system (Omega, Sigma, m, T) for f [symbol, see text] in L2(Omega) the averages [equation, see text] converge for almost every omicron in. Our result implies that sequences like ([ndelta]), where delta > 1 and not an integer, ([n log n]), and ([n2/log n]) are good averaging sequences for L2. In fact, all the sequences we examine will turn out to be good averaging for Lp, p > 1; and even for L log L. We will also establish necessary and sufficient growth conditions on a(x) so that the sequence ([a(n)]) is good averaging for mean convergence. Note that for some a(x) (e.g., a(x) = log2 x), ([a(n)]) may be good for mean convergence without being good for pointwise convergence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the evolution of eukaryotic genes, introns are believed to have played a major role in increasing the probability of favorable duplication events, chance recombinations, and exon shuffling resulting in functional hybrid proteins. As a rule, prokaryotic genes lack introns, and the examples of prokaryotic introns described do not seem to have contributed to gene evolution by exon shuffling. Still, certain protein families in modern bacteria evolve rapidly by recombination of genes, duplication of functional domains, and as shown for protein PAB of the anaerobic bacterial species Peptostreptococcus magnus, by the shuffling of an albumin-binding protein module from group C and G streptococci. Characterization of a protein PAB-related gene in a P. magnus strain with less albumin-binding activity revealed that the shuffled module was missing. Based on this fact and observations made when comparing gene sequences of this family of bacterial surface proteins interacting with albumin and/or immunoglobulin, a model is presented that can explain how this rapid intronless evolution takes place. A new kind of genetic element is introduced: the recer sequence promoting interdomain, in frame recombination and acting as a structure-less flexibility-promoting spacer in the corresponding protein. The data presented also suggest that antibiotics could represent the selective pressure behind the shuffling of protein modules in P. magnus, a member of the indigenous bacterial flora.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The condition termed 46,XY complete gonadal dysgenesis is characterized by a completely female phenotype and streak gonads. In contrast, subjects with 46,XY partial gonadal dysgenesis and those with embryonic testicular regression sequence usually present ambiguous genitalia and a mix of Müllerian and Wolffian structures. In 46,XY partial gonadal dysgenesis gonadal histology shows evidence of incomplete testis determination. In 46,XY embryonic testicular regression sequence there is lack of gonadal tissue on both sides. Various lines of evidence suggest that embryonic testicular regression sequence is a variant form of 46,XY gonadal dysgenesis. The sex-determining region Y chromosome gene (SRY) encodes sequences for the testis-determining factor. To date germ-line mutations in SRY have been reported in approximately 20% of subjects with 46,XY complete gonadal dysgenesis. However, no germ-line mutations of SRY have been reported in subjects with the partial forms. We studied 20 subjects who presented either 46,XY partial gonadal dysgenesis or 46,XY embryonic testicular regression sequence. We examined the SRY gene and the minimum region of Y-specific DNA known to confer a male phenotype. The SRY-open reading frame (ORF) was normal in all subjects. However a de novo interstitial deletion 3' to the SRY-ORF was found in one subject. Although it is possible that the deletion was unrelated to the subject's phenotype, we propose that the deletion was responsible for the abnormal gonadal development by diminishing expression of SRY. We suggest that the deletion resulted either in the loss of sequences necessary for normal SRY expression or in a position effect that altered SRY expression. This case provides further evidence that deletions of the Y chromosome outside the SRY-ORF can result in either complete or incomplete sex reversal.