71 resultados para SINGLE-CELL ASSAY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interaction between CD40 on B cells and CD40 ligand molecules on T cells is pivotal for the generation of a thymus-dependent antibody response. Here we show that B cells deficient in CD40 expression are unable to elicit the proliferation of allogeneic T cells in vitro. More importantly, mice immunized with CD40-/- B cells become tolerant to allogeneic major histocompatibility complex (MHC) antigens as measured by a mixed lymphocyte reaction and cytotoxic T-cell assay. The failure of CD40-/- B cells to serve as antigen presenting cells in vitro was corrected by the addition of anti-CD28 mAb. Moreover, lipopolysaccharide stimulation, which upregulates B7 expression, reversed the inability of CD40-/- B cells to stimulate an alloresponse in vitro and abrogated the capacity of these B cells to induce tolerance in vivo. These results suggest that CD40 engagement by CD40 ligand expressed on antigen-activated T cells is critical for the upregulation of B7 molecules on antigen-presenting B cells that subsequently deliver the costimulatory signals necessary for T-cell proliferation and differentiation. Our experiments suggest a novel strategy for the induction of antigen-specific tolerance in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanism by which tolerance is induced via systemic administration of high doses of aqueous antigen has been analyzed by using mice transgenic for a T-cell receptor specific for the influenza virus hemagglutinin (HA) peptide comprising amino acids 126-138. After intravenous injection of 750 (but not 75) micrograms of HA peptide, a state of hyporesponsiveness was rapidly induced. In the thymus, in situ apoptosis in the cortex and at the corticomedullary junction was responsible for a synchronous and massive deletion of CD4+ CD8+ thymocytes. In secondary lymphoid organs, HA-reactive T cells were initially activated but were hyporesponsive at the single cell level. After 3 days, however, those cells were rapidly deleted, at least partially, through an apoptotic process. Therefore, both thymic and peripheral apoptosis, in addition to T-cell receptor desensitization, contribute to high-dose tolerance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the cortex fast excitatory synaptic currents onto excitatory pyramidal neurons and inhibitory nonpyramidal neurons are mediated by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors exhibiting cell-type-specific differences in their kinetic properties. AMPA receptors consist of four subunits (GluR1-4), each existing as two splice variants, flip and flop, which critically affect the desensitization properties of receptors expressed in heterologous systems. Using single cell reverse transcription PCR to analyze the mRNA of AMPA receptor subunits expressed in layers I-III neocortical neurons, we find that 90% of the GluR1-4 in nonpyramidal neurons are flop variants, whereas 92% of the GluR1-4 in pyramidal neurons are flip variants. We also find that nonpyramidal neurons predominantly express GluR1 mRNA (GluR1/GluR1-4 = 59%), whereas pyramidal neurons contain mainly GluR2 mRNA (GluR2/GluR1-4 = 59%). However, the neuron-type-specific splicing is exhibited by all four AMPA receptor subunits. We suggest that the predominance of the flop variants contributes to the faster and more extensive desensitization in nonpyramidal neurons, compared to pyramidal cells where flip variants are dominant. Alternative splicing of AMPA receptors may play an important role in regulating synaptic function in a cell-type-specific manner, without changing permeation properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Caveolin, a 21- to 24-kDa integral membrane protein, is a principal component of caveolae membranes. Caveolin interacts directly with heterotrimeric guanine nucleotide binding proteins (G proteins) and can functionally regulate their activity. Here, an approximately 20-kDa caveolin-related protein, caveolin-2, was identified through microsequencing of adipocyte-derived caveolin-enriched membranes; caveolin was retermed caveolin-1. Caveolins 1 and 2 are similar in most respects. mRNAs for both caveolin-1 and caveolin-2 are most abundantly expressed in white adipose tissue and are induced during adipocyte differentiation. Caveolin-2 colocalizes with caveolin-1, indicating that caveolin-2 also localizes to caveolae. However, caveolin-1 and caveolin-2 differ in their functional interactions with heterotrimeric G proteins, possibly explaining why caveolin-1 and -2 are coexpressed within a single cell.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the differentiation potential of precursor cells within the developing spinal cord of mice and have shown that spinal cord cells from embryonic day 10 specifically give rise to neurons when plated onto an astrocytic monolayer, Ast-1. These neurons had the morphology of motor neurons and > 83% expressed the motor neuron markers choline acetyltransferase, peripherin, calcitonin gene-related peptide, and L-14. By comparison, < 10% of the neurons arising on monolayers of other neural cell lines or 3T3 fibroblasts had motor neuron characteristics. Cells derived from dorsal, intermediate, and ventral regions of the spinal cord all behaved similarly and gave rise to motor neuron-like cells when plated onto Ast-1. By using cells that expressed the lacZ reporter gene, it was shown that > 93% of cells present on the Ast-1 monolayers were motor neuron-like. Time-lapse analysis revealed that the precursors on the Ast-1 monolayers gave rise to neurons either directly or following a single cell division. Together, these results indicate that precursors in the murine spinal cord can be induced to differentiate into the motor neuron phenotype by factors produced by Ast-1 cells, suggesting that a similar factor(s) produced by cells akin to Ast-1 may regulate motor neuron differentiation in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The coexistence of two phylogenetically distinct symbiont species within a single cell, a condition not previously known in any metazoan, is demonstrated in the gills of a Mid-Atlantic Ridge hydrothermal vent mussel (family Mytilidae). Large and small symbiont morphotypes within the gill bacteriocytes are shown to be separate bacterial species by molecular phylogenetic analysis and fluorescent in situ hybridization. The two symbiont species are affiliated with thioautotrophic and methanotrophic symbionts previously found in monospecific associations with closely related mytilids from deep-sea hydrothermal vents and hydrocarbon seeps.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L-Glutamate is the most common excitatory neurotransmitter in the brain and plays a crucial role in neuronal plasticity as well as in neurotoxicity. While a large body of literature describes the induction of immediate-early genes, including c-fos, fosB, c-jun, junB, zif/268, and krox genes by glutamate and agonists in neurons, very little is known about preexisting transcription factors controlling the induction of such genes. This prompted us to investigate whether stimulation of glutamate receptors can activate NF-kappa B, which is present in neurons in either inducible or constitutive form. Here we report that brief treatments with kainate or high potassium strongly activated NF-kappa B in granule cells from rat cerebellum. This was detected at the single cell level by immunostaining with a monoclonal antibody that selectively reacts with the transcriptionally active, nuclear form of NF-kappa B p65. The activation of NF-kappa B could be blocked with the antioxidant pyrrolidine dithiocarbamate, suggesting the involvement of reactive oxygen intermediates. The data may explain the kainate-induced cell surface expression of major histocompatibility complex class I molecules, which are encoded by genes known to be controlled by NF-kappa B. Moreover, NF-kappa B activity was found to change dramatically in neurons during development of the cerebellum between days 5 and 7 after birth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gap junctions are plaque-like clusters of intercellular channels that mediate intercellular communication. Each of two adjoining cells contains a connexon unit which makes up half of the whole channel. Gap junction channels are formed from a multigene family of proteins called connexins, and different connexins may be coexpressed by a single cell type and found within the same plaque. Rodent gap junctions contain two proteins, connexins 32 and 26. Use of a scanning transmission electron microscope for mass analysis of rodent gap junction plaques and split gap junctions prvided evidence consistent with a model in which the channels may be made from (i) solely connexin 26, (ii) solely connexin 32, or (iii) mixtures of connexin 26 and connexin 32 in which the two connexons are made entirely of connexin 26 and connexin 32. The different types of channels segregate into distinct domains, implying tha connexon channels self-associate to give a non-random distribution within tissues. Since each connexin confers distinct physiological properties on its membrane channels, these results imply that the physiological properties of channels can be tailored by mixing the constituent proteins within these macromolecular structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Whole-cell patch-clamp recordings and single-cell Ca2+ measurements were used to study the control of Ca2+ entry through the Ca2+ release-activated Ca2+ influx pathway (ICRAC) in rat basophilic leukemia cells. When intracellular inositol 1,4,5-trisphosphate (InsP3)-sensitive stores were depleted by dialyzing cells with high concentrations of InsP3, ICRAC inactivated only slightly in the absence of ATP. Inclusion of ATP accelerated inactivation 2-fold. The inactivation was increased further by the ATP analogue adenosine 5'-[gamma-thio]triphosphate, which is readily used by protein kinases, but not by 5'-adenylyl imidodiphosphate, another ATP analogue that is not used by kinases. Neither cyclic nucleotides nor inhibition of calmodulin or tyrosine kinase prevented the inactivation. Staurosporine and bisindolylmaleimide, protein kinase C inhibitors, reduced inactivation of ICRAC, whereas phorbol ester accelerated inactivation of the current. These results demonstrate that a protein kinase-mediated phosphorylation, probably through protein kinase C, inactivates ICRAC. Activation of the adenosine receptor (A3 type) in RBL cells did not evoke much Ca2+ influx or systematic activation of ICRAC. After protein kinase C was blocked, however, large ICRAC was observed in all cells and this was accompanied by large Ca2+ influx. The ability of a receptor to evoke Ca2+ entry is determined, at least in part, by protein kinase C. Antigen stimulation, which triggers secretion through a process that requires Ca2+ influx, activated ICRAC. The regulation of ICRAC by protein kinase will therefore have important consequences on cell functioning.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The key requirements for high-throughput single-nucleotide polymorphism (SNP) typing of DNA samples in large-scale disease case-control studies are automatability, simplicity, and robustness, coupled with minimal cost. In this paper we describe a fluorescence technique for the detection of SNPs that have been amplified by using the amplification refractory mutation system (ARMS)-PCR procedure. Its performance was evaluated using 32 sequence-specific primer mixes to assign the HLA-DRB alleles to 80 lymphoblastoid cell line DNAs chosen from our database for their diversity. All had been typed previously by alternative methods, either direct sequencing or gel electrophoresis. We believe the detection system that we call AMDI (alkaline-mediated differential interaction) satisfies the above criteria and is suitable for general high-throughput SNP typing.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Construction of a bispecific single-chain antibody derivative is described that consists of two different single-chain Fv fragments joined through a Gly-Ser linker. One specificity of the two Fv fragments is directed against the CD3 antigen of human T cells and the other is directed against the epithelial 17-1A antigen; the latter had been found in a clinical trial to be a suitable target for antibody therapy of minimal residual colorectal cancer. The construct could be expressed in CHO cells as a fully functional protein, while its periplasmic expression in Escherichia coli resulted in a nonfunctional protein only. The antigen-binding properties of the bispecific single-chain antibody are indistinguishable from those of the corresponding univalent single-chain Fv fragments. By redirecting human peripheral T lymphocytes against 17-1A-positive tumor cells, the bispecific antibody proved to be highly cytotoxic at nanomolar concentrations as demonstrated by 51Cr release assay on various cell lines. The described bispecific construct has a molecular mass of 60 kDa and can be easily purified by its C-terminal histidine tail on a Ni-NTA chromatography column. As bispecific antibodies have already been shown to be effective in vivo in experimental tumor systems as well as in phase-one clinical trials, the small CD3/17-1A-bispecific antibody may be more efficacious than intact antibodies against minimal residual cancer cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2C is a typical alloreactive cytotoxic T lymphocyte clone that recognizes two different ligands. These ligands are adducts of the allo-major histocompatibility complex (MHC) molecule H-2Ld and an endogenous octapeptide, and of the self-MHC molecule H-2Kb and another peptide. MHC-binding and T-cell assays with synthetic peptides in combination with molecular modeling studies were employed to analyze the structural basis for this crossreactivity. The molecular surfaces of the two complexes differ greatly in densities and distributions of positive and negative charges. However, modifications of the peptides that increase similarity decrease the capacities of the resulting MHC peptide complexes to induce T-cell responses. Moreover, the roles of the peptides in ligand recognition are different for self- and allo-MHC-restricted T-cell responses. The self-MHC-restricted T-cell responses were finely tuned to recognition of the peptide. The allo-MHC-restricted responses, on the other hand, largely ignore modifications of the peptide. The results strongly suggest that adaptation of the T-cell receptor to the different ligand structures, rather than molecular mimicry by the ligands, is the basis for the crossreactivity of 2C. This conclusion has important implications for T-cell immunology and for the understanding of immunological disorders.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chemotaxis of Escherichia coli toward phosphotransferase systems (PTSs)–carbohydrates requires phosphoenolpyruvate-dependent PTSs as well as the chemotaxis response regulator CheY and its kinase, CheA. Responses initiated by flash photorelease of a PTS substrates d-glucose and its nonmetabolizable analog methyl α-d-glucopyranoside were measured with 33-ms time resolution using computer-assisted motion analysis. This, together with chemotactic mutants, has allowed us to map out and characterize the PTS chemotactic signal pathway. The responses were absent in mutants lacking the general PTS enzymes EI or HPr, elevated in PTS transport mutants, retarded in mutants lacking CheZ, a catalyst of CheY autodephosphorylation, and severely reduced in mutants with impaired methyl-accepting chemotaxis protein (MCP) signaling activity. Response kinetics were comparable to those triggered by MCP attractant ligands over most of the response range, the most rapid being 11.7 ± 3.1 s−1. The response threshold was <10 nM for glucose. Responses to methyl α-d-glucopyranoside had a higher threshold, commensurate with a lower PTS affinity, but were otherwise kinetically indistinguishable. These facts provide evidence for a single pathway in which the PTS chemotactic signal is relayed rapidly to MCP–CheW–CheA signaling complexes that effect subsequent amplification and slower CheY dephosphorylation. The high sensitivity indicates that this signal is generated by transport-induced dephosphorylation of the PTS rather than phosphoenolpyruvate consumption.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The epithelial amiloride-sensitive sodium channel (ENaC) controls transepithelial Na+ movement in Na+-transporting epithelia and is associated with Liddle syndrome, an autosomal dominant form of salt-sensitive hypertension. Detailed analysis of ENaC channel properties and the functional consequences of mutations causing Liddle syndrome has been, so far, limited by lack of a method allowing specific and quantitative detection of cell-surface-expressed ENaC. We have developed a quantitative assay based on the binding of 125I-labeled M2 anti-FLAG monoclonal antibody (M2Ab*) directed against a FLAG reporter epitope introduced in the extracellular loop of each of the α, β, and γ ENaC subunits. Insertion of the FLAG epitope into ENaC sequences did not change its functional and pharmacological properties. The binding specificity and affinity (Kd = 3 nM) allowed us to correlate in individual Xenopus oocytes the macroscopic amiloride-sensitive sodium current (INa) with the number of ENaC wild-type and mutant subunits expressed at the cell surface. These experiments demonstrate that: (i) only heteromultimeric channels made of α, β, and γ ENaC subunits are maximally and efficiently expressed at the cell surface; (ii) the overall ENaC open probability is one order of magnitude lower than previously observed in single-channel recordings; (iii) the mutation causing Liddle syndrome (β R564stop) enhances channel activity by two mechanisms, i.e., by increasing ENaC cell surface expression and by changing channel open probability. This quantitative approach provides new insights on the molecular mechanisms underlying one form of salt-sensitive hypertension.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Functionally significant stretch-activated ion channels have been clearly identified in excitable cells. Although single-channel studies suggest their expression in other cell types, their activity in the whole-cell configuration has not been shown. This discrepancy makes their physiological significance doubtful and suggests that their mechanical activation is artifactual. Possible roles for these molecules in nonexcitable cells are acute cell-volume regulation and, in epithelial cells, the complex adjustment of ion fluxes across individual cell membranes when the rate of transepithelial transport changes. We report the results of experiments on isolated epithelial cells expressing in the basolateral membrane stretch-activated K+ channels demonstrable by the cell-attached patch-clamp technique. In these cells, reversible whole-cell currents were elicited by both isosmotic and hyposmotic cell swelling. Cation selectivity and block by inorganic agents were the same for single-channel and whole-cell currents, indicating that the same entity underlies single-channel and whole-cell currents and that the single-channel events are not artifactual. In these cells, when the rate of apical-membrane NaCl entry increases, the cell Na+ content and volume also increase, stimulating the Na+,K+-ATPase at the basolateral membrane, i.e., both Na+ extrusion and K+ uptake increase. We speculate that, under these conditions, the parallel activation of basolateral K+ channels (by the swelling) elevates conductive K+ loss, tending to maintain the cell K+ content constant (“pump-leak parallelism”). This study describes a physiologically relevant stretch-activated channel, at both the single-channel and whole-cell levels, in a nonneural cell type.