70 resultados para Produtive reorganization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Auditory filial imprinting in the domestic chicken is accompanied by a dramatic loss of spine synapses in two higher associative forebrain areas, the mediorostral neostriatum/hyperstriatum ventrale (MNH) and the dorsocaudal neostriatum (Ndc). The cellular mechanisms that underlie this learning-induced synaptic reorganization are unclear. We found that local pharmacological blockade of N-methyl-d-aspartate (NMDA) receptors in the MNH, a manipulation that has been shown previously to impair auditory imprinting, suppresses the learning-induced spine reduction in this region. Chicks treated with the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV) during the behavioral training for imprinting (postnatal day 0–2) displayed similar spine frequencies at postnatal day 7 as naive control animals, which, in both groups, were significantly higher than in imprinted animals. Because the average dendritic length did not differ between the experimental groups, the reduced spine frequency can be interpreted as a reduction of the total number of spine synapses per neuron. In the Ndc, which is reciprocally connected with the MNH and not directly influenced by the injected drug, learning-induced spine elimination was partly suppressed. Spine frequencies of the APV-treated, behaviorally trained but nonimprinted animals were higher than in the imprinted animals but lower than in the naive animals. These results provide evidence that NMDA receptor activation is required for the learning-induced selective reduction of spine synapses, which may serve as a mechanism of information storage specific for juvenile emotional learning events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T cell receptor (TCR) antagonists inhibit antigen-induced T cell activation and by themselves fail to induce phenotypic changes associated with T cell activation. However, we have recently shown that TCR antagonists are inducers of antigen-presenting cell (APC)–T cell conjugates. The signaling pathway associated with this cytoskeleton-dependent event appears to involve tyrosine phosphorylation and activation of Vav. In this study, we investigated the role played by the protein tyrosine kinases Fyn, Lck, and ZAP-70 in antagonist-induced signaling pathway. Antagonist stimulation increased tyrosine phosphorylation and kinase activity of Fyn severalfold, whereas little or no increase in Lck and ZAP-70 activity was observed. Second, TCR stimulation of Lck−, Fynhi Jurkat cells induced strong tyrosine phosphorylation of Vav. In contrast, minimal increase in tyrosine phosphorylation of Vav was observed in Lckhi, Fynlo Jurkat cells. Finally, study of T cells from a Fyn-deficient TCR transgenic mouse also showed that Fyn was required for tyrosine phosphorylation and activation of Vav induced by both antagonist and agonist peptides. The deficiency in Vav phosphorylation in Fyn-deficient T cells was associated with a defect in the formation of APC–T cell conjugates when T cells were stimulated with either agonist or antagonist peptide. We conclude from these results that Vav is a selective substrate for Fyn, especially under conditions of low-affinity TCR-mediated signaling, and that this signaling pathway involving Fyn, Vav, and Rac-1 is required for the cytoskeletal reorganization that leads to T cell–APC conjugates and the formation of the immunologic synapse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Auditory conditioning (associative learning) causes reorganization of the cochleotopic (frequency) maps of the primary auditory cortex (AI) and the inferior colliculus. Focal electric stimulation of the AI also evokes basically the same cortical and collicular reorganization as that caused by conditioning. Therefore, part of the neural mechanism for the plasticity of the central auditory system caused by conditioning can be explored by focal electric stimulation of the AI. The reorganization is due to shifts in best frequencies (BFs) together with shifts in frequency-tuning curves of single neurons. In the AI of the Mongolian gerbil (Meriones unguiculatus) and the posterior division of the AI of the mustached bat (Pteronotus parnellii), focal electric stimulation evokes BF shifts of cortical auditory neurons located within a 0.7-mm distance along the frequency axis. The amount and direction of BF shift differ depending on the relationship in BF between stimulated and recorded neurons, and between the gerbil and mustached bat. Comparison in BF shift between different mammalian species and between different cortical areas of a single species indicates that BF shift toward the BF of electrically stimulated cortical neurons (centripetal BF shift) is common in the AI, whereas BF shift away from the BF of electrically stimulated cortical neurons (centrifugal BF shift) is special. Therefore, we propose a hypothesis that reorganization, and accordingly organization, of cortical auditory areas caused by associative learning can be quite different between specialized and nonspecialized (ordinary) areas of the auditory cortex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell shape plays a role in cell growth, differentiation, and death. Herein, we used the hepatocyte, a normal, highly differentiated cell characterized by a long G1 phase, to understand the mechanisms that link cell shape to growth. First, evidence was provided that the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) cascade is a key transduction pathway controlling the hepatocyte morphology. MEK2/ERK2 activation in early G1 phase did not lead to cell proliferation but induced cell shape spreading and demonstration was provided that this MAPK-dependent spreading was required for reaching G1/S transition and DNA replication. Moreover, epidermal growth factor (EGF) was found to control this morphogenic signal in addition to its mitogenic effect. Thus, blockade of cell spreading by cytochalasin D or PD98059 treatment resulted in inhibition of EGF-dependent DNA replication. Our data led us to assess the first third of G1, is exclusively devoted to the growth factor-dependent morphogenic events, whereas the mitogenic signal occured at only approximately mid-G1 phase. Moreover, these two growth factor-related sequential signaling events involved successively activation of MEK2-ERK2 and then MEK1/2-ERK1/2 isoforms. In addition, we demonstrated that inhibition of extracellular matrix receptor, such as integrin β1 subunit, leads to cell arrest in G1, whereas EGF was found to up-regulated integrin β1 and fibronectin in a MEK-ERK–dependent manner. This process in relation to cytoskeletal reorganization could induce hepatocyte spreading, making them permissive for DNA replication. Our results provide new insight into the mechanisms by which a growth factor can temporally control dual morphogenic and mitogenic signals during the G1 phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intracellular protein degradation, which must be tightly controlled to protect normal proteins, is carried out by ATP-dependent proteases. These multicomponent enzymes have chaperone-like ATPases that recognize and unfold protein substrates and deliver them to the proteinase components for digestion. In ClpAP, hexameric rings of the ClpA ATPase stack axially on either face of the ClpP proteinase, which consists of two apposed heptameric rings. We have used cryoelectron microscopy to characterize interactions of ClpAP with the model substrate, bacteriophage P1 protein, RepA. In complexes stabilized by ATPγS, which bind but do not process substrate, RepA dimers are seen at near-axial sites on the distal surface of ClpA. On ATP addition, RepA is translocated through ≈150 Å into the digestion chamber inside ClpP. Little change is observed in ClpAP, implying that translocation proceeds without major reorganization of the ClpA hexamer. When translocation is observed in complexes containing a ClpP mutant whose digestion chamber is already occupied by unprocessed propeptides, a small increase in density is observed within ClpP, and RepA-associated density is also seen at other axial sites. These sites appear to represent intermediate points on the translocation pathway, at which segments of unfolded RepA subunits transiently accumulate en route to the digestion chamber.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intramolecular electron transfer in azurin in water and deuterium oxide has been studied over a broad temperature range. The kinetic deuterium isotope effect, kH/kD, is smaller than unity (0.7 at 298 K), primarily caused by the different activation entropies in water (−56.5 J K−1 mol−1) and in deuterium oxide (−35.7 J K−1 mol−1). This difference suggests a role for distinct protein solvation in the two media, which is supported by the results of voltammetric measurements: the reduction potential (E0′) of Cu2+/+ at 298 K is 10 mV more positive in D2O than in H2O. The temperature dependence of E0′ is also different, yielding entropy changes of −57 J K−1 mol−1 in water and −84 J K−1 mol−1 in deuterium oxide. The driving force difference of 10 mV is in keeping with the kinetic isotope effect, but the contribution to ΔS‡ from the temperature dependence of E0′ is positive rather than negative. Isotope effects are, however, also inherent in the nuclear reorganization Gibbs free energy and in the tunneling factor for the electron transfer process. A slightly larger thermal protein expansion in H2O than in D2O (0.001 nm K−1) is sufficient both to account for the activation entropy difference and to compensate for the different temperature dependencies of E0′. Thus, differences in driving force and thermal expansion appear as the most straightforward rationale for the observed isotope effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The establishment of cadherin-dependent cell–cell contacts in human epidermal keratinocytes are known to be regulated by the Rac1 small GTP-binding protein, although the mechanisms by which Rac1 participates in the assembly or disruption of cell–cell adhesion are not well understood. In this study we utilized green fluorescent protein (GFP)-tagged Rac1 expression vectors to examine the subcellular distribution of Rac1 and its effects on E-cadherin–mediated cell–cell adhesion. Microinjection of keratinocytes with constitutively active Rac1 resulted in cell spreading and disruption of cell–cell contacts. The ability of Rac1 to disrupt cell–cell adhesion was dependent on colony size, with large established colonies being resistant to the effects of active Rac1. Disruption of cell–cell contacts in small preconfluent colonies was achieved through the selective recruitment of E-cadherin–catenin complexes to the perimeter of multiple large intracellular vesicles, which were bounded by GFP-tagged L61Rac1. Similar vesicles were observed in noninjected keratinocytes when cell–cell adhesion was disrupted by removal of extracellular calcium or with the use of an E-cadherin blocking antibody. Moreover, formation of these structures in noninjected keratinocytes was dependent on endogenous Rac1 activity. Expression of GFP-tagged effector mutants of Rac1 in keratinocytes demonstrated that reorganization of the actin cytoskeleton was important for vesicle formation. Characterization of these Rac1-induced vesicles revealed that they were endosomal in nature and tightly colocalized with the transferrin receptor, a marker for recycling endosomes. Expression of GFP-L61Rac1 inhibited uptake of transferrin-biotin, suggesting that the endocytosis of E-cadherin was a clathrin-independent mechanism. This was supported by the observation that caveolin, but not clathrin, localized around these structures. Furthermore, an inhibitory form of dynamin, known to inhibit internalization of caveolae, inhibited formation of cadherin vesicles. Our data suggest that Rac1 regulates adherens junctions via clathrin independent endocytosis of E-cadherin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ADP-ribosylation factor (ARF) GTPases and their regulatory proteins have been implicated in the control of diverse biological functions. Two main classes of positive regulatory elements for ARF have been discovered so far: the large Sec7/Gea and the small cytohesin/ARNO families, respectively. These proteins harbor guanine–nucleotide-exchange factor (GEF) activity exerted by the common Sec7 domain. The availability of a specific inhibitor, the fungal metabolite brefeldin A, has enabled documentation of the involvement of the large GEFs in vesicle transport. However, because of the lack of such tools, the biological roles of the small GEFs have remained controversial. Here, we have selected a series of RNA aptamers that specifically recognize the Sec7 domain of cytohesin 1. Some aptamers inhibit guanine–nucleotide exchange on ARF1, thereby preventing ARF activation in vitro. Among them, aptamer M69 exhibited unexpected specificity for the small GEFs, because it does not interact with or inhibit the GEF activity of the related Gea2-Sec7 domain, a member of the class of large GEFs. The inhibitory effect demonstrated in vitro clearly is observed as well in vivo, based on the finding that M69 produces similar results as a dominant-negative, GEF-deficient mutant of cytohesin 1: when expressed in the cytoplasm of T-cells, M69 reduces stimulated adhesion to intercellular adhesion molecule-1 and results in a dramatic reorganization of F-actin distribution. These highly specific cellular effects suggest that the ARF-GEF activity of cytohesin 1 plays an important role in cytoskeletal remodeling events of lymphoid cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial pathogens have evolved many ingenious ways to infect their hosts and cause disease, including the subversion and exploitation of target host cells. One such subversive microbe is enteropathogenic Escherichia coli (EPEC). A major cause of infantile diarrhea in developing countries, EPEC poses a significant health threat to children worldwide. Central to EPEC-mediated disease is its colonization of the intestinal epithelium. After initial adherence, EPEC causes the localized effacement of microvilli and intimately attaches to the host cell surface, forming characteristic attaching and effacing (A/E) lesions. Considered the prototype for a family of A/E lesion-causing bacteria, recent in vitro studies of EPEC have revolutionized our understanding of how these pathogens infect their hosts and cause disease. Intimate attachment requires the type III-mediated secretion of bacterial proteins, several of which are translocated directly into the infected cell, including the bacteria's own receptor (Tir). Binding to this membrane-bound, pathogen-derived protein permits EPEC to intimately attach to mammalian cells. The translocated EPEC proteins also activate signaling pathways within the underlying cell, causing the reorganization of the host actin cytoskeleton and the formation of pedestal-like structures beneath the adherent bacteria. This review explores what is known about EPEC's subversion of mammalian cell functions and how this knowledge has provided novel insights into bacterial pathogenesis and microbe-host interactions. Future studies of A/E pathogens in animal models should provide further insights into how EPEC exploits not only epithelial cells but other host cells, including those of the immune system, to cause diarrheal disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peripheral auditory neurons are tuned to single frequencies of sound. In the central auditory system, excitatory (or facilitatory) and inhibitory neural interactions take place at multiple levels and produce neurons with sharp level-tolerant frequency-tuning curves, neurons tuned to parameters other than frequency, cochleotopic (frequency) maps, which are different from the peripheral cochleotopic map, and computational maps. The mechanisms to create the response properties of these neurons have been considered to be solely caused by divergent and convergent projections of neurons in the ascending auditory system. The recent research on the corticofugal (descending) auditory system, however, indicates that the corticofugal system adjusts and improves auditory signal processing by modulating neural responses and maps. The corticofugal function consists of at least the following subfunctions. (i) Egocentric selection for short-term modulation of auditory signal processing according to auditory experience. Egocentric selection, based on focused positive feedback associated with widespread lateral inhibition, is mediated by the cortical neural net working together with the corticofugal system. (ii) Reorganization for long-term modulation of the processing of behaviorally relevant auditory signals. Reorganization is based on egocentric selection working together with nonauditory systems. (iii) Gain control based on overall excitatory, facilitatory, or inhibitory corticofugal modulation. Egocentric selection can be viewed as selective gain control. (iv) Shaping (or even creation) of response properties of neurons. Filter properties of neurons in the frequency, amplitude, time, and spatial domains can be sharpened by the corticofugal system. Sharpening of tuning is one of the functions of egocentric selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epithelial–mesenchymal transitions (EMTs) are an essential manifestation of epithelial cell plasticity during morphogenesis, wound healing, and tumor progression. Transforming growth factor-β (TGF-β) modulates epithelial plasticity in these physiological contexts by inducing EMT. Here we report a transcriptome screen of genetic programs of TGF-β-induced EMT in human keratinocytes and propose functional roles for extracellular response kinase (ERK) mitogen-activated protein kinase signaling in cell motility and disruption of adherens junctions. We used DNA arrays of 16,580 human cDNAs to identify 728 known genes regulated by TGF-β within 4 hours after treatment. TGF-β-stimulated ERK signaling mediated regulation of 80 target genes not previously associated with this pathway. This subset is enriched for genes with defined roles in cell–matrix interactions, cell motility, and endocytosis. ERK-independent genetic programs underlying the onset of EMT involve key pathways and regulators of epithelial dedifferentiation, undifferentiated transitional and mesenchymal progenitor phenotypes, and mediators of cytoskeletal reorganization. The gene expression profiling approach delineates complex context-dependent signaling pathways and transcriptional events that determine epithelial cell plasticity controlled by TGF-β. Investigation of the identified pathways and genes will advance the understanding of molecular mechanisms that underlie tumor invasiveness and metastasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The origin of the catalytic power of enzymes is discussed, paying attention to evolutionary constraints. It is pointed out that enzyme catalysis reflects energy contributions that cannot be determined uniquely by current experimental approaches without augmenting the analysis by computer simulation studies. The use of energy considerations and computer simulations allows one to exclude many of the popular proposals for the way enzymes work. It appears that the standard approaches used by organic chemists to catalyze reactions in solutions are not used by enzymes. This point is illustrated by considering the desolvation hypothesis and showing that it cannot account for a large increase in kcat relative to the corresponding kcage for the reference reaction in a solvent cage. The problems associated with other frequently invoked mechanisms also are outlined. Furthermore, it is pointed out that mutation studies are inconsistent with ground state destabilization mechanisms. After considering factors that were not optimized by evolution, we review computer simulation studies that reproduced the overall catalytic effect of different enzymes. These studies pointed toward electrostatic effects as the most important catalytic contributions. The nature of this electrostatic stabilization mechanism is far from being obvious because the electrostatic interaction between the reacting system and the surrounding area is similar in enzymes and in solution. However, the difference is that enzymes have a preorganized dipolar environment that does not have to pay the reorganization energy for stabilizing the relevant transition states. Apparently, the catalytic power of enzymes is stored in their folding energy in the form of the preorganized polar environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although Al is one of the major factors limiting crop production, the mechanisms of toxicity remain unknown. The growth inhibition and swelling of roots associated with Al exposure suggest that the cytoskeleton may be a target of Al toxicity. Using indirect immunofluorescence microscopy, microtubules and microfilaments in maize (Zea mays L.) roots were visualized and changes in their organization and stability correlated with the symptoms of Al toxicity. Growth studies showed that the site of Al toxicity was associated with the elongation zone. Within this region, Al resulted in a reorganization of microtubules in the inner cortex. However, the orientation of microtubules in the outer cortex and epidermis remained unchanged even after chronic symptoms of toxicity were manifest. Auxin-induced reorientation and cold-induced depolymerization of microtubules in the outer cortex were blocked by Al pretreatment. These results suggest that Al increased the stability of microtubules in these cells. The stabilizing effect of Al in the outer cortex coincided with growth inhibition. Reoriented microfilaments were also observed in Al-treated roots, and Al pretreatment minimized cytochalasin B-induced microfilament fragmentation. These data show that reorganization and stabilization of the cytoskeleton are closely associated with Al toxicity in maize roots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Baculovirus-expressed recombinant Sir3p (rSir3p) has been purified to near homogeneity, and its binding to naked DNA, mononucleosomes, and nucleosomal arrays has been characterized in vitro. At stoichiometric levels rSir3p interacts with intact nucleosomal arrays, mononucleosomes, and naked DNA, as evidenced by formation of supershifted species on native agarose gels. Proteolytic removal of the core histone tail domains inhibits but does not completely abolish rSir3p binding to nucleosomal arrays. The linker DNA in the supershifted complexes remains freely accessible to restriction endonuclease digestion, suggesting that both the tail domains and nucleosomal DNA contribute to rSir3p–chromatin interactions. Together these data indicate that rSir3p cross-links individual nucleosomal arrays into supramolecular assemblies whose physical properties transcend those of typical 10-nm and 30-nm fibers. Based on these data we hypothesize that Sir3p functions, at least in part, by mediating reorganization of the canonical chromatin fiber into functionally specialized higher order chromosomal domains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In pollen development, a dramatic reorganization of the actin cytoskeleton takes place during the passage of the pollen grain into dormancy and on activation of pollen tube growth. A role for actin-binding proteins is implicated and we report here the identification of a small gene family in maize that encodes actin depolymerizing factor (ADF)-like proteins. The ADF group of proteins are believed to control actin polymerization and depolymerization in response to both intracellular and extracellular signals. Two of the maize genes ZmABP1 and ZmABP2 are expressed specifically in pollen and germinating pollen suggesting that the protein products may be involved in pollen actin reorganization. A third gene, ZmABP3, encodes a protein only 56% and 58% identical to ZmABP1 and ZmABP2, respectively, and its expression is suppressed in pollen and germinated pollen. The fundamental biochemical characteristics of the ZmABP proteins has been elucidated using bacterially expressed ZmABP3 protein. This has the ability to bind monomeric actin (G-actin) and filamentous actin (F-actin). Moreover, it decreases the viscosity of polymerized actin solutions consistent with an ability to depolymerize filaments. These biochemical characteristics, taken together with the sequence comparisons, support the inclusion of the ZmABP proteins in the ADF group.