49 resultados para Product Personalisation
Resumo:
Of the microsomal P450 cytochromes, the ethanol-inducible isoform, P450 2E1, is believed to be predominant in leading to oxidative damage, including the generation of radical species that contribute to lipid peroxidation, and in the reductive beta-scission of lipid hydroperoxides to give hydrocarbons and aldehydes. In the present study, the sensitivity of a series of P450s to trans-4-hydroxy-2-nonenal (HNE), a known toxic product of membrane lipid peroxidation, was determined. After incubation of a purified cytochrome with HNE, the other components of the reconstituted system (NADPH-cytochrome P450 reductase, phosphatidylcholine, and NADPH) were added, and the rate of oxygenation of 1-phenylethanol to yield acetophenone was assayed. Inactivation occurs in a time-dependent and HNE concentration-dependent manner, with P450s 2E1 and 1A1 being the most sensitive, followed by isoforms 1A2, 3A6, and 2B4. At an HNE concentration of 0.24 microM, which was close to the micromolar concentration of the enzyme, four of the isoforms were significantly inhibited, but not P450 2B4. In other experiments, the reductase was shown to be only relatively weakly inactivated by HNE. P450s 2E1 and 2B4 in microsomal membranes from animals induced with acetone or phenobarbital, respectively, are as readily inhibited as the purified forms. Evidence was obtained that the P450 heme is apparently not altered and the sulfur ligand is not displaced, that substrate protects against HNE, and that the inactivation is reversed upon dialysis. Higher levels of reductase or substrate do not restore the activity of inhibited P450 in the catalytic assay. Our results suggest that the observed inhibition of the various P450s is of sufficient magnitude to cause significant changes in the metabolism of foreign compounds such as drugs and chemical carcinogens by the P450 oxygenase system at HNE concentrations that occur in biological membranes. In view of the known activities of P450 2E1 in generating lipid hydroperoxides and in their beta-scission, its inhibition by this product of membrane peroxidation may provide a negative regulatory function.
Resumo:
Macrophage-stimulating protein (MSP) was originally identified as an inducer of murine resident peritoneal macrophage responsiveness to chemoattractants. We recently showed that the product of RON, a protein tyrosine kinase cloned from a human keratinocyte library, is the receptor for MSP. Similarity of murine stk to RON led us to determine if the stk gene product is the murine receptor for MSP. Radiolabeled MSP could bind to NIH 3T3 cells transfected with murine stk cDNA (3T3/stk). Binding was saturable and was inhibited by unlabeled MSP but not by structurally related proteins, including hepatocyte growth factor and plasminogen. Specific binding to STK was demonstrated by cross-linking of 125I-labeled MSP to membrane proteins of 3T3/stk cells, which resulted in a protein complex with a molecular mass of 220 kDa. This radiolabeled complex comprised 125I-MSP and STK, since it could be immunoprecipitated by antibodies to the STK beta chain. Binding of MSP to stk cDNA-transfected cells induced tyrosine phosphorylation of the 150-kDa STK beta chain within 1 min and caused increased motile activity. These results establish the murine stk gene product as a specific transmembrane protein tyrosine kinase receptor for MSP. Inasmuch as the stk cDNA was cloned from a hematopoietic stem cell, our data suggest that in addition to macrophages and keratinocytes, a cell in the hematopoietic lineage may also be a target for MSP.
Resumo:
RB, the protein product of the retinoblastoma tumor-suppressor gene, regulates the activity of specific transcription factors. This regulation appears to be mediated either directly through interactions with specific transcription factors or through an alternative mechanism. Here we report that stimulation of Sp1-mediated transcription by RB is partially abrogated at the nonpermissive temperature in ts13 cells. These cells contain a temperature-sensitive mutation in the TATA-binding protein-associated factor TAFII250, first identified as the cell cycle regulatory protein CCG1. The stimulation of Sp1-mediated transcription by RB in ts13 cells at the nonpermissive temperature could be restored by the introduction of wild-type human TAFII250. Furthermore, we demonstrate that RB binds directly to hTAFII250 in vitro and in vivo. These results suggest that RB can confer transcriptional regulation and possibly cell cycle control and tumor suppression through an interaction with TFIID, in particular with TAFII250.
Resumo:
The vpr gene of human immunodeficiency virus type 1 (HIV-1) encodes a 15-kDa virion-associated protein that functions as a regulator of cellular processes linked to the HIV life cycle. We report the interaction of a 41-kDa cytosolic viral protein R interacting protein 1 (Rip-1) with Vpr in vitro. Rip-1 displays a wide tissue distribution, including relevant targets of HIV infection. Vpr protein induced nuclear translocation of Rip-1, as did glucocorticoid receptor (GR)-II-stimulating steroids. Importantly, Vpr and Rip-1 coimmunoprecipitated with the human GR as part of an activated receptor complex. Vpr complementation of a vpr mutant virus was also mimicked by GR-II-stimulating steroids. Vpr and GR-II actions were inhibited by mifepristone, a GR-II pathway inhibitor. Together these data directly link the activity of the vpr gene product to the glucocorticoid steroid pathway and provide a biochemical mechanism for the cellular and viral activity of Vpr, as well as suggest that a unique class of antivirals, which includes mifepristone (RU486), may influence HIV-1 replication.