59 resultados para Phenotypic Maturation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transformation of cells in tissue culture results in a variety of cellular changes including alterations in cell growth, adhesiveness, motility, morphology, and organization of the cytoskeleton. Morphological and cytoskeletal changes are perhaps the most readily apparent features of transformed cells. Although a number of studies have documented a decrease in the expression of specific tropomyosin (TM) isoforms in transformed cells, it remains to be determined if the suppression of TM synthesis is essential in the establishment and maintenance of the transformed pheno-type. To address the roles of different TM isoforms in transformed cells we have examined the effects of expressing specific TM isoforms in transformed cells using a Kirsten virus-transformed cell line (ATCC NRK1569) as a model system. In contrast to normal fibroblasts, the NRK 1569 cells contain reduced levels of TM-1 and undetectable levels of TM-2 and TM-3. These cells have a rounded morphology and are devoid of stress fibers. Employing expression plasmids for TM-2 and TM-3, stable cell lines were established from the NRK 1569 cells that express these isoforms individually. We demonstrate that expression of TM-2 or TM-3 leads to increased cell spreading accompanied by the formation of identifiable microfilament bundles, as well as significant restoration of well-defined vinculin-containing focal adhesion plaques, although expression of each isoform exhibited distinct properties. In addition, cells expressing TM-2, but not TM-3, exhibited contact-inhibited cell growth and a requirement for serum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of ischemia on the maturation of secretory proteins are not well understood. Among several events that occur during ischemia-reperfusion are a rapid and extensive decrease in ATP levels and an alteration of cellular oxidative state. Since the normal folding and assembly of secretory proteins are mediated by endoplasmic reticulum (ER) molecular chaperones, the function of which depends on ATP and maintenance of an appropriate redox environment, ischemia might be expected to perturb folding of secretory proteins. In this study, whole animal and cultured cell models for the epithelial ischemic state were used to examine this possibility. After acute kidney ischemia, marked increases in the mRNA levels of the ER chaperones glucose-regulated protein (grp)78/immunoglobulin-binding protein (BiP), grp94, and ER protein (ERp)72 were noted. Likewise, when cellular ATP was depleted to less than 10% of control with antimycin A, mRNA levels of BiP, ERp72, and grp94 were increased in kidney and thyroid epithelial cell culture models. Since the signal for the up-regulation of these stress proteins is believed to be the accumulation of misfolded/misassembled secretory proteins in the ER, their induction after ischemia in vivo and antimycin treatment of cultured cells suggests that maturation of secretory proteins in the ER lumen might indeed be perturbed. To analyze the effects of antimycin A on the maturation of secretory proteins, we studied the fate of thyroglobulin (Tg), a large oligomeric secretory glycoprotein, the folding and assembly of which seems to require a variety of ER chaperones. Treatment of cultured thyroid epithelial cells with antimycin A greatly inhibited ( > 90%) the secretion of Tg. Sucrose density gradient analysis revealed that in antimycin A-treated cells Tg associates into large macromolecular complexes which, by immunofluorescence, appeared to localize to the ER. Furthermore, coimmunoprecipitation studies after antimycin A treatment demonstrated that Tg stably associates with BiP, grp94, and ERp72. Together, our results suggest that a key cellular lesion in ischemia is the misfolding of secretory proteins as they transit the ER, and this leads not only to increased expression of ER chaperones but also to their stable association with and the subsequent retention of at least some misfolded secretory proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After a retrovirus particle is released from the cell, the dimeric genomic RNA undergoes a change in conformation. We have previously proposed that this change, termed maturation of the dimer, is due to the action of nucleocapsid (NC) protein on the RNA within the virus particle. We now report that treatment of a 345-base synthetic fragment of Harvey sarcoma virus RNA with recombinant or synthetic HIV-1 NC protein converts a less stable form of dimeric RNA to a more stable form. This phenomenon thus appears to reproduce the maturation of dimeric retroviral RNA in a completely defined system in vitro. To our knowledge, maturation of dimeric RNA within a retrovirus particle is the first example of action of an "RNA chaperone" protein in vivo. Studies with mutant NC proteins suggest that the activity depends upon basic amino acid residues flanking the N-terminal zinc finger and upon residues within the N-terminal finger, including an aromatic amino acid, but do not require the zinc finger structures themselves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the contribution of interleukin-4 (IL-4) to airway inflammation in vivo and to explore directly its relationship to airway reactivity, we created transgenic mice in which the murine cDNA for IL-4 was regulated by the rat Clara cell 10 protein promoter. Expression was detected only in the lung and not in thymus, heart, liver, spleen, kidney, or uterus. The expression of IL-4 elicited hypertrophy of epithelial cells of the trachea, bronchi, and bronchioles. Hypertrophy is due, at least in part, to the accumulation of mucus glycoprotein. Histologic examination of parenchyma revealed multinucleated macrophages and occasional islands of cells consisting largely of eosinophils or lymphocytes. Analysis of lung lavage fluid revealed the presence of a leukocytic infiltrate consisting of lymphocytes, neutrophils and eosinophils. Mice expressing IL-4 had greater baseline airway resistance but did not demonstrate hyperreactivity to methacholine. Thus, the expression of IL-4 selectively within the lung elicits an inflammatory response characterized by epithelial cell hypertrophy, and the accumulation of macrophages, lymphocytes, eosinophils, and neutrophils without resulting in an alteration in airway reactivity to inhaled methacholine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apolipoprotein (apo)-B is found in two forms in mammals: apo-B100, which is made in the liver and the yolk sac, and apo-B48, a truncated protein made in the intestine. To provide models for understanding the physiologic purpose for the two forms of apo-B, we used targeted mutagenesis of the apo-B gene to generate mice that synthesize exclusively apo-B48 (apo-B48-only mice) and mice that synthesize exclusively apo-B100 (apo-B100-only mice). Both the apo-B48-only mice and apo-B100-only mice developed normally, were healthy, and were fertile. Thus, apo-B48 synthesis was sufficient for normal embryonic development, and the synthesis of apo-B100 in the intestines of adult mice caused no readily apparent adverse effects on intestinal function or nutrition. Compared with wild-type mice fed a chow diet, the levels of low density lipoprotein (LDL)-cholesterol and very low density lipoprotein- and LDL-triacylglycerols were lower in apo-B48-only mice and higher in the apo-B100-only mice. In the setting of apo-E-deficiency, the apo-B100-only mutation lowered cholesterol levels, consistent with the fact that apo-B100-lipoproteins can be cleared from the plasma via the LDL receptor, whereas apo-B48-lipoproteins lacking apo-E cannot. The apo-B48-only and apo-B100-only mice should prove to be valuable models for experiments designed to understand the purpose for the two forms of apo-B in mammalian metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes a paternal effect on sperm aster size and microtubule organization during bovine fertilization. Immunocytochemistry using tubulin antibodies quantitated with confocal microscopy was used to measure the diameter of the sperm aster and assign a score (0-3) based on the degree of radial organization (0, least organized; 3, most organized). Three bulls (A-C) were chosen based on varying fertility (A, lowest fertility; C, highest fertility) as assessed by nonreturn to estrus after artificial insemination and in vitro embryonic development to the blastocyst stage. The results indicate a statistically significant bull-dependent difference in diameter of the sperm aster and in the organization of the sperm astral microtubules. Insemination from bull A resulted in an average sperm aster diameter of 101.4 microm (76.3% of oocyte diameter). This significantly differs (P < or = 0.0001) from the average sperm aster diameters produced after inseminations from bull B (78.2 microm; 60.8%) or bull C (77.9 microm; 57.8%), which themselves displayed no significant differences. The degree of radial organization of the sperm aster was also bull-dependent. Sperm asters organized by bull A-derived sperm had an average quality score of 1.8, which was higher than that of bull B (1.4; P < or = 0.0005) or bull C (1.2; P < or = 0.0001). Results with bulls B and C were also significantly different (P < or = 0.025). These results indicate that the paternally derived portion of the centrosome varies among males and that this variation affects male fertility, the outcome of early development, and, therefore, reproductive success.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitogen-activated protein kinase (MAPK) is selectively activated by injecting either mos or MAPK kinase (mek) RNA into immature mouse oocytes maintained in the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). IBMX arrests oocyte maturation, but Mos (or MEK) overexpression overrides this block. Under these conditions, meiosis I is significantly prolonged, and MAPK becomes fully activated in the absence of p34cdc2 kinase or maturation-promoting factor. In these oocytes, large openings form in the germinal vesicle adjacent to condensing chromatin, and microtubule arrays, which stain for both MAPK and centrosomal proteins, nucleate from these regions. Maturation-promoting factor activation occurs later, concomitant with germinal vesicle breakdown, the contraction of the microtubule arrays into a precursor of the spindle, and the redistribution of the centrosomal proteins into the newly forming spindle poles. These studies define important new functions for the Mos/MAPK cascade in mouse oocyte maturation and, under these conditions, reveal novel detail of the early stages of oocyte meiosis I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic cells are potent antigen-presenting cells that initiate primary immune responses. Although dendritic cells derive from bone marrow stem cells, the intermediate stages in their development remain unknown. In this study, plastic-adherent blood monocytes (CD14+, CD1a-) cultured for 7 days with granulocyte-monocyte colony-stimulating factor, interleukin 4, and tumor necrosis factor alpha were shown to differentiate into CD1a+ CD83+ dendritic cells. These cells displayed all phenotypic and morphologic characteristics of mature dendritic cells and were the most potent stimulatory cells in allogeneic mixed leukocyte reactions. The identification of specific culture conditions that generate large numbers of dendritic cells from purified monocytes uncovers an important step in dendritic cell maturation that will allow the further characterization of their role in autoimmune diseases, graft rejection, and human immunodeficiency virus infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endoproteolytic processing of the human protein C (HPC) precursor to its mature form involves cleavage of the propeptide after amino acids Lys-2-Arg-1 and removal of a Lys156-Arg157 dipeptide connecting the light and heavy chains. This processing was inefficient in the mammary gland of transgenic mice and pigs. We hypothesized that the protein processing capacity of specific animal organs may be improved by the coexpression of selected processing enzymes. We tested this by targeting expression of the human proprotein processing enzyme, named paired basic amino acid cleaving enzyme (PACE)/furin, or an enzymatically inactive mutant, PACEM, to the mouse mammary gland. In contrast to mice expressing HPC alone, or to HPC/PACEM bigenic mice, coexpression of PACE with HPC resulted in efficient conversion of the precursor to mature protein, with cleavage at the appropriate sites. These results suggest the involvement of PACE in the processing of HPC in vivo and represent an example of the engineering of animal organs into bioreactors with enhanced protein processing capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Production of infectious human immunodeficiency virus (HIV) requires proper polyprotein processing by the dimeric viral protease. The trans-dominant inhibitory activity of a defective protease monomer with the active site Asp-25 changed to Asn was measured by transient transfection. A proviral plasmid that included the drug-selectable Escherichia coli gpt gene was used to deliver the wild-type (wt) or mutant proteases to cultured cells. Coexpression of the wt proviral DNA (HIV-gpt) with increasing amounts of the mutant proviral DNA (HIV-gpt D25N) results in a concomitant decrease in proteolytic activity monitored by in vivo viral polyprotein processing. The viral particles resulting from inactivation of the protease were mostly immature, consisting predominantly of unprocessed p55gag and p160gag-pol polyproteins. In the presence of HIV-1 gp160 env, the number of secreted noninfectious particles correlated with the presence of increasing amounts of the defective protease. Greater than 97% reduction in infectivity was observed at a 1:6 ratio of wt to defective protease DNA. This provides an estimate of the level of inhibition required for effectively preventing virion processing. Stable expression of the defective protease in monkey cells reduced the yield of infectious particles from these cells by 90% upon transfection with the wt proviral DNA. These results show that defective subunits of the viral protease exert a trans-dominant inhibitory effect resulting from the formation of catalytically compromised heterodimers in vivo, ultimately yielding noninfectious viral particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcription factor GATA-1 recognizes a consensus motif present in regulatory regions of numerous erythroid-expressed genes. Mouse embryonic stem cells lacking GATA-1 cannot form mature red blood cells in vivo. In vitro differentiation of GATA-1- embryonic stem cells gives rise to a population of committed erythroid precursors that exhibit developmental arrest and death. We show here that the demise of GATA-1- erythroid cells is accompanied by several features characteristics of apoptosis. This process occurs despite normal expression of all known GATA target genes examined, including the erythropoietin receptor, and independent of detectable accumulation of the tumor suppressor protein p53. Thus, in addition to its established role in regulating genes that define the erythroid phenotype, GATA-1 also supports the viability of red cell precursors by suppressing apoptosis. These results illustrate the multifunctional nature of GATA-1 and suggest a mechanism by which other hematopoietic transcription factors may ensure the development of specific lineages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear-encoded proteins targeted to the chloroplast are typically synthesized with N-terminal transit peptides which are proteolytically removed upon import. Structurally related proteins of 145 and 143 kDa copurify with a soluble chloroplast processing enzyme (CPE) that cleaves the precursor for the major light-harvesting chlorophyll a/b binding protein and have been implicated in the maturation of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and acyl carrier protein. The 145- and 143-kDa proteins have not been found as a heterodimer and thus may represent functionally independent isoforms encoded by separate genes. Here we describe the primary structure of a 140-kDa polypeptide encoded by cDNAs isolated by using antibodies raised against the 145/143-kDa doublet. The 140-kDa polypeptide contains a transit peptide, and strikingly, a His-Xaa-Xaa-Glu-His zinc-binding motif that is conserved in a recently recognized family of metalloendopeptidases, which includes Escherichia coli protease III, insulin-degrading enzyme, and subunit beta of the mitochondrial processing peptidase. Identity of 25-30%, concentrated near the N terminus of the 140-kDa polypeptide, is found with these proteases. Expression of CPE in leaves is not light dependent. Indeed, transcripts are present in dark-grown plants, and the 145/143-kDa doublet and proteolytic activity are both found in etioplasts, as well as in root plastids. Thus, CPE appears to be a necessary component of the import machinery in photosynthetic and nonphotosynthetic tissues, and it may function as a general stromal processing peptidase in plastids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maturation of 5S RNA in Escherichia coli is poorly understood. Although it is known that large precursors of 5S RNA accumulate in mutant cells lacking the endoribonuclease-RNase E, almost nothing is known about how the mature 5' and 3' termini of these molecules are generated. We have examined 5S RNA maturation in wild-type and single- or multiple-exoribonuclease-deficient cells by Northern blot and primer-extension analysis. Our results indicate that no mature 5S RNA is made in RNase T-deficient strains. Rather, 5S RNA precursors containing predominantly 2 extra nucleotides at the 3' end accumulate. Apparently, these 5S RNAs are functional inasmuch as mutant cells are viable, growing only slightly slower than wild type. Purified RNase T can remove the extra 3' residues, showing that it is directly involved in the trimming reaction. In contrast, mutations affecting other 3' exoribonucleases have no effect on 5S RNA maturation. Approximately 90% of the 5S RNAs in both wild-type and RNase T- cells contain mature 5' termini, indicating that 5' processing is independent of RNase T action. These data identify the enzyme responsible for generating the mature 3' terminus of 5S RNA molecules and also demonstrate that a completely processed 5S RNA molecule is not essential for cell survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experimental manipulation of peptide growth hormones and their cellular receptors is central to understanding the pathways governing cellular signaling and growth control. Previous work has shown that intracellular antibodies targeted to the endoplasmic reticulum (ER) can be used to capture specific proteins as they enter the ER, preventing their transport to the cell surface. Here we have used this technology to inhibit the cell surface expression of the alpha subunit of the high-affinity interleukin 2 receptor (IL-2R alpha). A single-chain variable-region fragment of the anti-Tac monoclonal antibody was constructed with a signal peptide and a C-terminal ER retention signal. Intracellular expression of the single-chain antibody was found to completely abrogate cell surface expression of IL-2R alpha in stimulated Jurkat T cells. IL-2R alpha was detectable within the Jurkat cells as an immature 40-kDa form that was sensitive to endoglycosidase H, consistent with its retention in a pre- or early Golgi compartment. A single-chain antibody lacking the ER retention signal was also able to inhibit cell surface expression of IL-2R alpha although the mechanism appeared to involve rapid degradation of the receptor chain within the ER. These intracellular antibodies will provide a valuable tool for examining the role of IL-2R alpha in T-cell activation, IL-2 signal transduction, and the deregulated growth of leukemic cells which overexpress IL-2R alpha.