72 resultados para Peptide nucleic acid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mass spectrometry and fluorescent probes have provided direct evidence that alkylating agents permeate the protein capsid of naked viruses and chemically inactivate the nucleic acid. N-acetyl-aziridine and a fluorescent alkylating agent, dansyl sulfonate aziridine, inactivated three different viruses, flock house virus, human rhinovirus-14, and foot and mouth disease virus. Mass spectral studies as well as fluorescent probes showed that alkylation of the genome was the mechanism of inactivation. Because particle integrity was not affected by selective alkylation (as shown by electron microscopy and sucrose gradient experiments), it was reasoned that the dynamic nature of the viral capsid acts as a conduit to the interior of the particle. Potential applications include fluorescent labeling for imaging viral genomes in living cells, the sterilization of blood products, vaccine development, and viral inactivation in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rolling circle amplification (RCA) is a surface-anchored DNA replication reaction that can be exploited to visualize single molecular recognition events. Here we report the use of RCA to visualize target DNA sequences as small as 50 nts in peripheral blood lymphocytes or in stretched DNA fibers. Three unique target sequences within the cystic fibrosis transmembrane conductance regulator gene could be detected simultaneously in interphase nuclei, and could be ordered in a linear map in stretched DNA. Allele-discriminating oligonucleotide probes in conjunction with RCA also were used to discriminate wild-type and mutant alleles in the cystic fibrosis transmembrane conductance regulator, p53, BRCA-1, and Gorlin syndrome genes in the nuclei of cultured cells or in DNA fibers. These observations demonstrate that signal amplification by RCA can be coupled to nucleic acid hybridization and multicolor fluorescence imaging to detect single nucleotide changes in DNA within a cytological context or in single DNA molecules. This provides a means for direct physical haplotyping and the analysis of somatic mutations on a cell-by-cell basis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prions are unprecedented infectious pathogens that cause a group of invariably fatal neurodegenerative diseases by an entirely novel mechanism. Prion diseases may present as genetic, infectious, or sporadic disorders, all of which involve modification of the prion protein (PrP). Bovine spongiform encephalopathy (BSE), scrapie of sheep, and Creutzfeldt–Jakob disease (CJD) of humans are among the most notable prion diseases. Prions are transmissible particles that are devoid of nucleic acid and seem to be composed exclusively of a modified protein (PrPSc). The normal, cellular PrP (PrPC) is converted into PrPSc through a posttranslational process during which it acquires a high β-sheet content. The species of a particular prion is encoded by the sequence of the chromosomal PrP gene of the mammals in which it last replicated. In contrast to pathogens carrying a nucleic acid genome, prions appear to encipher strain-specific properties in the tertiary structure of PrPSc. Transgenetic studies argue that PrPSc acts as a template upon which PrPC is refolded into a nascent PrPSc molecule through a process facilitated by another protein. Miniprions generated in transgenic mice expressing PrP, in which nearly half of the residues were deleted, exhibit unique biological properties and should facilitate structural studies of PrPSc. While knowledge about prions has profound implications for studies of the structural plasticity of proteins, investigations of prion diseases suggest that new strategies for the prevention and treatment of these disorders may also find application in the more common degenerative diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a mechanism for oligonucleotide (ODN) release from cationic lipid complexes in cells that accounts for various observations on cationic lipid-nucleic acid-cell interactions. Fluorescent confocal microscopy of cells treated with rhodamine-labeled cationic liposome/ fluorescein-labeled ODN (F-ODN) complexes show the F-ODN separates from the lipid after internalization and enters the nucleus leaving the fluorescent lipid in cytoplasmic structures. ODN displacement from the complex was studied by fluorescent resonance energy transfer. Anionic liposome compositions (e.g., phosphatidylserine) that mimic the cytoplasmic facing monolayer of the cell membrane released ODN from the complex at about a 1:1 (-/+) charge ratio. Release was independent of ionic strength and pH. Physical separation of the F-ODN from monovalent and multivalent cationic lipids was confirmed by gel electrophoresis. Fluid but not solid phase anionic liposomes are required, whereas the physical state of the cationic lipids does not effect the release. Water soluble molecules with a high negative linear charge density, dextran sulfate, or heparin also release ODN. However, ATP, spermidine, spermine, tRNA, DNA, polyglutamic acid, polylysine, bovine serum albumin, or histone did not release ODN, even at 100-fold charge excess (-/+). Based upon these results, we propose that the complex, after internalization by endocytosis, induces flip-flop of anionic lipids from the cytoplasmic facing monolayer. Anionic lipids laterally diffuse into the complex and form a charged neutralized ion-pair with the cationic lipids. This leads to displacement of the ODN from the cationic lipid and its release into the cytoplasm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two classes of RNA ligands that bound to separate, high affinity nucleic acid binding sites on Q beta replicase were previously identified. RNA ligands to the two sites, referred to as site I and site II, were used to investigate the molecular mechanism of RNA replication employed by the four-subunit replicase. Replication inhibition by site I- and site II-specific ligands defined two subsets of replicatable RNAs. When provided with appropriate 3' ends, ligands to either site served as replication templates. UV crosslinking experiments revealed that site I is associated with the S1 subunit, site II with elongation factor Tu, and polymerization with the viral subunit of the holoenzyme. These results provide the framework for a three site model describing template recognition and product strand initiation by Q beta replicase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular analysis of complex modular structures, such as promoter regions or multi-domain proteins, often requires the creation of families of experimental DNA constructs having altered composition, order, or spacing of individual modules. Generally, creation of every individual construct of such a family uses a specific combination of restriction sites. However, convenient sites are not always available and the alternatives, such as chemical resynthesis of the experimental constructs or engineering of different restriction sites onto the ends of DNA fragments, are costly and time consuming. A general cloning strategy (nucleic acid ordered assembly with directionality, NOMAD; WWW resource locator http:@Lmb1.bios.uic.edu/NOMAD/NOMAD.htm l) is proposed that overcomes these limitations. Use of NOMAD ensures that the production of experimental constructs is no longer the rate-limiting step in applications that require combinatorial rearrangement of DNA fragments. NOMAD manipulates DNA fragments in the form of "modules" having a standardized cohesive end structure. Specially designed "assembly vectors" allow for sequential and directional insertion of any number of modules in an arbitrary predetermined order, using the ability of type IIS restriction enzymes to cut DNA outside of their recognition sequences. Studies of regulatory regions in DNA, such as promoters, replication origins, and RNA processing signals, construction of chimeric proteins, and creation of new cloning vehicles, are among the applications that will benefit from using NOMAD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present new methods for identifying and analyzing statistically significant residue clusters that occur in three-dimensional (3D) protein structures. Residue clusters of different kinds occur in many contexts. They often feature the active site (e.g., in substrate binding), the interface between polypeptide units of protein complexes, regions of protein-protein and protein-nucleic acid interactions, or regions of metal ion coordination. The methods are illustrated with 3D clusters centering on four themes. (i) Acidic or histidine-acidic clusters associated with metal ions. (ii) Cysteine clusters including coordination of metals such as zinc or iron-sulfur structures, cysteine knots prominent in growth factors, multiple sets of buried disulfide pairings that putatively nucleate the hydrophobic core, or cysteine clusters of mostly exposed disulfide bridges. (iii) Iron-sulfur proteins and charge clusters. (iv) 3D environments of multiple histidine residues. Study of diverse 3D residue clusters offers a new perspective on protein structure and function. The algorithms can aid in rapid identification of distinctive sites, suggest correlations among protein structures, and serve as a tool in the analysis of new structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structures of Watson-Crick base paired 15-nucleobase oligomer strands in A-type or B-type conformation in which one strand [a strand of alternating nucleotide and riboacetal thymidine nucleoside (RT) units, RP] is DNA and the other is composed of alternating nucleotides and riboacetal nucleosides have been studied by molecular mechanics. Analogously, oligomer strands of RNA in place of DNA have been modeled. The calculations indicate that the RP strand is more stable when complexed in an A-type duplex relative to a B-type form and that this conformational preference is presumably due to the more uniform nature of the former. Nearly planar ribose rings were more commonly observed in the minimized structures of the B-type DNA.RP duplexes as compared with A-type duplexes, despite the fact that planar ribofuranose rings are known to be energetically unfavorable in oligonucleotides. Computed relative stabilities of all duplexes containing the RP strand suggest that such heteroduplexes are less stable than the corresponding double-stranded DNA and double-stranded RNA species. These findings are in agreement with experimental results which show, when equivalent sequences were compared, that a DNA.RNA control forms a more stable duplex than RP hound to a complementary single-stranded RNA strand. In contrast, molecular mechanics studies of complementary triple-helical (DNA)2.RP, (DNA)2.DNA, and (DNA)2.RNA structures indicate that the binding of RP as a Hoogsteen strand stabilizes the underlying duplex to a greater extent compared with native oligonucleotides. These calculations suggest that puckering of the ribose ring in the riboacetal linkage leads to a more favorable interaction with a complementary nucleic acid target than the proposed planar geometry and that this puckering may account for the enhanced binding of RP to a double-stranded target.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ribozymes are polynucleotide molecules with intrinsic catalytic activity, capable of cleaving nucleic acid substrates. Large RNA molecules were synthesized containing a hammerhead ribozyme moiety of 52 nucleotides linked to an inactive leader sequence, for total lengths of either 262 or 1226 nucleotides. Frozen RNAs were irradiated with high energy electrons. Surviving ribozyme activity was determined using the ability of the irradiated ribozymes to cleave a labeled substrate. The amount of intact RNA remaining was determined from the same irradiated samples by scanning the RNA band following denaturing gel electrophoresis. Radiation target analyses of these data revealed a structural target size of 80 kDa and a ribozyme activity target size of 15 kDa for the smaller ribozyme, and 319 kDa and 16 kDa, respectively, for the larger ribozyme. The disparity in target size for activity versus structure indicates that, in contrast to proteins, there is no spread of radiation damage far from the primary site of ionization in RNA molecules. The smaller target size for activity indicates that only primary ionizations occurring in the specific active region are effective. This is similar to the case for oligosaccharides. We concluded that the presence of the ribose sugar in the polymer chain restricts radiation damage to a small region and prevents major energy transfer throughout the molecule. Radiation target analysis should be a useful technique for evaluating local RNA:RNA and RNA:protein interactions in vitro.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have developed a specific and sensitive nucleic acid amplification assay that is suitable for routine gene detection. The assay is based on a novel molecular genetic strategy in which two different RNA probes are hybridized to adjacent positions on a target nucleic acid and then ligated to form an amplifiable reporter RNA. The reporter RNA is then replicated up to a hundred billion-fold in a 30-min isothermal reaction that signals the presence of the target. The assay can detect fewer than 100 nucleic acid molecules; it provides quantitative results over a wide range of target concentrations and it employs a universal format that can detect any infectious agent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Potential errors in decoding genetic information are corrected by tRNA-dependent amino acid recognition processes manifested through editing reactions. One example is the rejection of difficult-to-discriminate misactivated amino acids by tRNA synthetases through hydrolytic reactions. Although several crystal structures of tRNA synthetases and synthetase-tRNA complexes exist, none of them have provided insight into the editing reactions. Other work suggested that editing required active amino acid acceptor hydroxyl groups at the 3' end of a tRNA effector. We describe here the isolation of a DNA aptamer that specifically induced hydrolysis of a misactivated amino acid bound to a tRNA synthetase. The aptamer had no effect on the stability of the correctly activated amino acid and was almost as efficient as the tRNA for inducing editing activity. The aptamer has no sequence similarity to that of the tRNA effector and cannot be folded into a tRNA-like structure. These and additional data show that active acceptor hydroxyl groups in a tRNA effector and a tRNA-like structure are not essential for editing. Thus, specific bases in a nucleic acid effector trigger the editing response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To identify changes in gene expression that occur in chicken embryo brain (CEB) cells as a consequence of their binding to the extracellular matrix molecule cytotactin/tenascin (CT/TN), a subtractive hybridization cloning strategy was employed. One of the cDNA clones identified was predicted to encode 381 amino acids and although it did not resemble any known sequences in the nucleic acid or protein data bases, it did contain the sequence motif for the cysteine-rich C3HC4 type of zinc finger, also known as a RING-finger. This sequence was therefore designated the chicken-RING zinc finger (C-RZF). In addition to the RING-finger, the C-RZF sequence also contained motifs for a leucine zipper, a nuclear localization signal, and a stretch of acidic amino acids similar to the activation domains of some transcription factors. Southern analysis suggested that C-RZF is encoded by a single gene. Northern and in situ hybridization analyses of E8 chicken embryo tissues indicated that expression of the C-RZF gene was restricted primarily to brain and heart. Western analysis of the nuclear and cytoplasmic fractions of chicken embryo heart cells and immunofluorescent staining of chicken embryo cardiocytes with anti-C-RZF antibodies demonstrated that the C-RZF protein was present in the nucleus. The data suggest that we have identified another member of the RING-finger family of proteins whose expression in CEB cells may be affected by CT/TN and whose nuclear localization and sequence motifs predict a DNA-binding function in the nucleus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Agrobacterium genetically transforms plant cells by transferring a single-stranded DNA (ssDNA) copy of the transferred DNA (T-DNA) element, the T-strand, in a complex with Agrobacterium proteins VirD2, bound to the 5' end, and VirE2. VirE2 binds single-stranded nucleic acid cooperatively, fully coating the T-strand, and the protein localizes to the plant cell nucleus when transiently expressed. The coupling of ssDNA binding and nuclear localizing activities suggests that VirE2 alone could mediate nuclear localization of ssDNA. In this study, fluorescently labeled ssDNA accumulated in the plant cell nucleus specifically when microinjected as a complex with VirE2. Microinjected ssDNA alone remained cytoplasmic. Import of VirE2-ssDNA complex into the nucleus via a protein import pathway was supported by (i) the inhibition of VirE2-ssDNA complex import in the presence of wheat germ agglutinin or a nonhydrolyzable GTP analog, both known inhibitors of protein nuclear import, and (ii) the retardation of import when complexes were prepared from a VirE2 mutant impaired in ssDNA binding and nuclear import.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have used an in vitro selection procedure called crosslinking SELEX (SELEX = systematic evolution of ligands by exponential enrichment) to identify RNA sequences that bind with high affinity and crosslink to the Rev protein from human immunodeficiency virus type 1 (HIV-1). A randomized RNA library substituted with the photoreactive chromophore 5-iodouracil was irradiated with monochromatic UV light in the presence of Rev. Those sequences with the ability to photocrosslink to Rev were partitioned from the rest of the RNA pool, amplified, and used for the next round of selection. Rounds of photocrosslinking selection were alternated with rounds of selection for RNA sequences with high affinity to Rev. This iterative, dual-selection method yielded RNA molecules with subnanomolar dissociation constants and high efficiency photocrosslinking to Rev. Some of the RNA molecules isolated by this procedure form a stable complex with Rev that is resistant to denaturing gel electrophoresis in the absence of UV irradiation. In vitro selection of nucleic acids by using modified nucleotides allows the isolation of nucleic acid molecules with potentially limitless chemical capacities to covalently attack a target molecule.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have analyzed differential gene expression in normal versus jun-transformed avian fibroblasts by using subtracted nucleic acid probes and differential nucleic acid hybridization techniques for the isolation of cDNA clones. One clone corresponded to a gene that was strongly expressed in a previously established quail (Coturnix japonica) embryo fibroblast line (VCD) transformed by a chimeric jun oncogene but whose expression was undetectable in normal quail embryo fibroblasts. Furthermore, the gene was expressed in quail or chicken fibroblast cultures that were freshly transformed by retroviral constructs carrying various viral or cellular jun alleles and in chicken fibroblasts transformed by the avian retrovirus ASV17 carrying the original viral v-jun allele. However, its expression was undetectable in a variety of established avian cell lines or freshly prepared avian fibroblast cultures transformed by other oncogenes or a chemical carcinogen. The nucleotide and deduced amino acid sequences of the cDNA clone were not identical to any sequence entries in the data bases but revealed significant similarities to avian beta-keratin genes; the highest degree of amino acid sequence identity was 63%. The gene, which we termed bkj, may represent a direct or indirect target for jun function.