64 resultados para PYRUVATE-DEHYDROGENASE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vivo pyruvate synthesis by malic enzyme (ME) and pyruvate kinase and in vivo malate synthesis by phosphoenolpyruvate carboxylase and the Krebs cycle were measured by 13C incorporation from [1-13C]glucose into glucose-6-phosphate, alanine, glutamate, aspartate, and malate. These metabolites were isolated from maize (Zea mays L.) root tips under aerobic and hypoxic conditions. 13C-Nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry were used to discern the positional isotopic distribution within each metabolite. This information was applied to a simple precursor-product model that enabled calculation of specific metabolic fluxes. In respiring root tips, ME was found to contribute only approximately 3% of the pyruvate synthesized, whereas pyruvate kinase contributed the balance. The activity of ME increased greater than 6-fold early in hypoxia, and then declined coincident with depletion of cytosolic malate and aspartate. We found that in respiring root tips, anaplerotic phosphoenolpyruvate carboxylase activity was high relative to ME, and therefore did not limit synthesis of pyruvate by ME. The significance of in vivo pyruvate synthesis by ME is discussed with respect to malate and pyruvate utilization by isolated mitochondria and intracellular pH regulation under hypoxia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In higher plants formate dehydrogenase (FDH, EC 1.2.1.2.) is a mitochondrial, NAD-dependent enzyme. We previously reported that in potato (Solanum tuberosum L.) FDH expression is high in tubers but low in green leaves. Here we show that in isolated tuber mitochondria FDH is involved in formate-dependent O2 uptake coupled to ATP synthesis. The effects of various environmental and chemical factors on FDH expression in leaves were tested using the mitochondrial serine hydroxymethyltransferase as a control. The abundance of FDH transcripts is strongly increased under various stresses, whereas serine hydroxymethyltransferase transcripts decline. The application of formate to leaves strongly enhances FDH expression, suggesting that it might be the signal for FDH induction. Our experiments using glycolytic products suggest that glycolysis may play an important role in formate synthesis in leaves in the dark and during hypoxia, and in tubers. Of particular interest is the dramatic accumulation of FDH transcripts after spraying methanol on leaves, as this compound is known to increase the yields of C3 plants. In addition, although the steady-state levels of FDH transcript increase very quickly in response to stress, protein accumulation is much slower, but can eventually reach the same levels in leaves as in tubers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify the proteins induced by Fe deficiency, we have compared the proteins of Fe-sufficient and Fe-deficient barley (Hordeum vulgare L.) roots by two-dimensional polyacrylamide gel electrophoresis. Peptide sequence analysis of induced proteins revealed that formate dehydrogenase (FDH), adenine phosphoribosyltransferase, and the Ids3 gene product (for Fe deficiency-specific) increased in Fe-deficient roots. FDH enzyme activity was detected in Fe-deficient roots but not in Fe-sufficient roots. A cDNA encoding FDH (Fdh) was cloned and sequenced. Fdh expression was induced by Fe deficiency. Fdh was also expressed under anaerobic stress and its expression was more rapid than that induced by Fe deficiency. Thus, the expression of Fdh observed in Fe-deficient barley roots appeared to be a secondary effect caused by oxygen deficiency in Fe-deficient plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly purified preparation of uridine 5′-diphosphate (UDP)-glucose (Glc) dehydrogenase (DH; EC 1.1.1.22) has been characterized from soybean (Glycine max L.) nodules. The enzyme had native and subunit molecular masses of approximately 272 and 50 kD, respectively. UDP-Glc DH displayed typical hyperbolic substrate kinetics and had Km values for UDP-Glc and NAD+ of 0.05 and 0.12 mm, respectively. Thymidine 5′-diphosphate-Glc and UDP-galactose could replace UDP-Glc as the sugar nucleotide substrate to some extent, but the enzyme had no activity with NADP+. Soybean nodule UDP-Glc DH was labile in the absence of NAD+ and was inhibited by a heat-stable, low-molecular-mass solute in crude extracts of soybean nodules. UDP-Glc DH was also isolated from developing soybean seeds and shoots of 5-d-old wheat and canola seedlings and was shown to have similar affinities for UDP-Glc and NAD+ as those of the soybean nodule enzyme. UDP-Glc DH from all of these sources was most active in young, rapidly growing tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously, we reported that transformation of tobacco (Nicotiana tabacum L.) with a vector containing a potato cytosolic pyruvate kinase (PKc) cDNA generated two plant lines specifically lacking leaf PKc (PKc−) as a result of co-suppression. PKc deficiency in these primary transformants did not appear to alter plant development, although root growth was not examined. Here we report a striking reduction in root growth of homozygous progeny of both PKc− lines throughout development under moderate (600 μE m−2 s−1) or low (100 μE m−2 s−1) light intensities. When both PKc− lines were cultivated under low light, shoot and flower development were also delayed and leaf indentations were apparent. Leaf PK activity in the transformants was significantly decreased at all time points examined, whereas root activities were unaffected. Polypeptides corresponding to PKc were undetectable on immunoblots of PKc− leaf extracts, except in 6-week-old low-light-grown PKc− plants, in which leaf PKc expression appeared to be greatly reduced. The metabolic implications of the kinetic characteristics of partially purified PKc from wild-type tobacco leaves are discussed. Overall, the results suggest that leaf PKc deficiency leads to a perturbation in source-sink relationships.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of initial activities of carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum show that CODH is mostly inactive at redox potentials higher than −300 mV. Initial activities measured at a wide range of redox potentials (0–500 mV) fit a function corresponding to the Nernst equation with a midpoint potential of −316 mV. Previously, extensive EPR studies of CODH have suggested that CODH has three distinct redox states: (i) a spin-coupled state at −60 to −300 mV that gives rise to an EPR signal termed Cred1; (ii) uncoupled states at <−320 mV in the absence of CO2 referred to as Cunc; and (iii) another spin-coupled state at <−320 mV in the presence of CO2 that gives rise to an EPR signal termed Cred2B. Because there is no initial CODH activity at potentials that give rise to Cred1, the state (Cred1) is not involved in the catalytic mechanism of this enzyme. At potentials more positive than −380 mV, CODH recovers its full activity over time when incubated with CO. This reductant-dependent conversion of CODH from an inactive to an active form is referred to hereafter as “autocatalysis.” Analyses of the autocatalytic activation process of CODH suggest that the autocatalysis is initiated by a small fraction of activated CODH; the small fraction of active CODH catalyzes CO oxidation and consequently lowers the redox potential of the assay system. This process is accelerated with time because of accumulation of the active enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rational engineering of enzymes involves introducing key amino acids guided by a knowledge of protein structure to effect a desirable change in function. To date, all successful attempts to change specificity have been limited to substituting individual amino acids within a protein fold. However, the infant field of protein engineering will only reach maturity when changes in function can be generated by rationally engineering secondary structures. Guided by x-ray crystal structures and molecular modeling, site-directed mutagenesis has been used to systematically invert the coenzyme specificity of Thermus thermophilus isopropylmalate dehydrogenase from a 100-fold preference for NAD to a 1000-fold preference for NADP. The engineered mutant, which is twice as active as wild type, contains four amino acid substitutions and an alpha-helix and loop that replaces the original beta-turn. These results demonstrate that rational engineering of secondary structures to produce enzymes with novel properties is feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alcohol dehydrogenase (Adh; alcohol:NAD+ oxidoreductase, EC 1.1.1.1) gene family has two or three loci in a broad array of angiosperm species. The relative stability in the number of Adh loci led Gottlieb [Gottlieb, L. D. (1982) Science 216, 373-380] to propose that the Adh gene family arose from an ancient gene duplication. In this study, the isolation of three loci from the California fan palm (Washingtonia robusta) is reported. The three loci from palm are highly diverged. One palm Adh gene, referred to here as adhB, has been completely sequenced, including 950 nucleotides of the upstream regulatory region. For the second locus, adhA, 81% of the exon sequence is complete. Both show the same basic structure as grass Adh genes in terms of intron number and intron location. The third locus, adhC, for which only a small amount of sequence is available (12% of exon sequence) appears to be more highly diverged. Comparison of the Adh gene families from palms and grasses shows that the adh1 and adh2 genes of grasses, and the adhA and adhB genes of palms, arose by duplication following the divergence of the two families. This finding suggests that the multiple Adh loci in different monocot lineages are not the result of a single ancestral duplication but, rather, of multiple duplication events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytosine arabinonucleoside (AraC) is a pyrimidine antimetabolite that kills proliferating cells by inhibiting DNA synthesis and, importantly, is also an inducer of apoptosis. We recently reported that age-induced apoptotic cell death of cultured cerebellar neurons is directly associated with an over-expression of a particulate 38-kDa protein, identified by us as glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12). We now show that the AraC-induced neuronal death of immature cerebellar granule cells in culture is effectively delayed by actinomycin-D, cycloheximide, or aurintricarboxylic acid (a DNase inhibitor). Furthermore, two GAPDH antisense, but not their corresponding sense, oligodeoxyribonucleotides markedly arrested AraC-induced apoptosis. This protection was more effective than that induced by the above-mentioned classical inhibitors of apoptosis. Prior to AraC-induced neuronal death, GAPDH mRNA levels increased by approximately 2.5-fold, and this mRNA accumulation was blocked by actinomycin-D and the GAPDH antisense (but not sense) oligonucleotide. Like actinomycin-D, a GAPDH antisense oligonucleotide also suppressed the AraC-induced over-expression of the 38-kDa particulate protein (i.e., GAPDH), while the corresponding sense oligonucleotide was totally ineffective. Thus, the present results show that GAPDH over-expression is involved in AraC-induced apoptosis of cultured cerebellar granule cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathogenic protozoan parasite Entamoeba histolytica, the cause of amebic dysentery and amebic liver abscess, is an obligate anaerobe, and derives energy from the fermentation of glucose to ethanol with pyruvate and acetyl coenzyme A as intermediates. We have isolated EhADH2, a key enzyme in this pathway, that is a NAD+- and Fe2+-dependent bifunctional enzyme with acetaldehyde dehydrogenase and alcohol dehydrogenase activities. EhADH2 is the only known eukaryotic member of a newly defined family of prokaryotic multifunctional enzymes, which includes the Escherichia coli AdhE enzyme, an enzyme required for anaerobic growth of E. coli. Because of the critical role of EhADH2 in the amebic fermentation pathway and the lack of known eukaryotic homologues of the EhADH2 enzyme, EhADH2 represents a potential target for antiamebic chemotherapy. However, screening of compounds for antiamebic activity is hampered by the cost of large scale growth of Ent. histolytica, and difficulties in quantitating drug efficacy in vitro. To approach this problem, we expressed the EhADH2 gene in a mutant strain of E. coli carrying a deletion of the adhE gene. Expression of EhADH2 restored the ability of the mutant E. coli strain to grow under anaerobic conditions. By screening compounds for the ability to inhibit the anaerobic growth of the E. coli/EhADH2 strain, we have developed a rapid assay for identifying compounds with anti-EhADH2 activity. Using bacteria to bypass the need for parasite culture in the initial screening process for anti-parasitic agents could greatly simplify and reduce the cost of identifying new therapeutic agents effective against parasitic diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A plant class III alcohol dehydrogenase (or glutathione-dependent formaldehyde dehydrogenase) has been characterized. The enzyme is a typical class III member with enzymatic parameters and substrate specificity closely related to those of already established animal forms. Km values with the pea enzyme are 6.5 microM for NAD+, 2 microM for S-hydroxymethylglutathione, and 840 microM for octanol versus 9, 4, and 1200 microM, respectively, with the human enzyme. Structurally, the pea/human class III enzymes are closely related, exhibiting a residue identity of 69% and with only 3 of 23 residues differing among those often considered in substrate and coenzyme binding. In contrast, the corresponding ethanol-active enzymes, the long-known human liver and pea alcohol dehydrogenases, differ more (47% residue identities) and are also in functionally important active site segments, with 12 of the 23 positions exchanged, including no less than 7 at the usually much conserved coenzyme-binding segment. These differences affect functionally important residues that are often class-distinguishing, such as those at positions 48, 51, and 115, where the plant ethanol-active forms resemble class III (Thr, Tyr, and Arg, respectively) rather than the animal ethanol-active class I forms (typically Ser, His, and Asp, respectively). Calculations of phylogenetic trees support the conclusions from functional residues in subgrouping plant ethanol-active dehydrogenases and the animal ethanol-active enzymes (class I) as separate descendants from the class III line. It appears that the classical plant alcohol dehydrogenases (now called class P) have a duplicatory origin separate from that of the animal class I enzymes and therefore a paralogous relationship with functional convergence of their alcohol substrate specificity. Combined, the results establish the conserved nature of class III also in plants, and contribute to the molecular and functional understanding of alcohol dehydrogenases by defining two branches of plant enzymes into the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial genes for cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 5 (ND5) of the sea anemone Metridium senile (phylum Cnidaria) each contain a group I intron. This is in contrast to the reported absence of introns in all other metazoan mtDNAs so far examined. The ND5 intron is unusual in that it ends with A and contains two genes (ND1 and ND3) encoding additional subunits of NADH dehydrogenase. Correctly excised ND5 introns are not circularized but are precisely cleaved near their 3' ends and polyadenylylated to provide bicistronic transcripts of ND1 and ND3. COI introns, which encode a putative homing endonuclease, circularize, but in a way that retains the entire genome-encoded intron sequence (other group I introns are circularized with loss of a short segment of the intron 5' end). Introns were detected in the COI and ND5 genes of other sea anemones, but not in the COI and ND5 genes of other cnidarians. This suggests that the sea anemone mitochondrial introns may have been acquired relatively recently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutamate dehydrogenase (GDH) is ubiquitous to all organisms, yet its role in higher plants remains enigmatic. To better understand the role of GDH in plant nitrogen metabolism, we have characterized an Arabidopsis mutant (gdh1-1) defective in one of two GDH gene products and have studied GDH1 gene expression. GDH1 mRNA accumulates to highest levels in dark-adapted or sucrose-starved plants, and light or sucrose treatment each repress GDH1 mRNA accumulation. These results suggest that the GDH1 gene product functions in the direction of glutamate catabolism under carbon-limiting conditions. Low levels of GDH1 mRNA present in leaves of light-grown plants can be induced by exogenously supplied ammonia. Under such conditions of carbon and ammonia excess, GDH1 may function in the direction of glutamate biosynthesis. The Arabidopsis gdh-deficient mutant allele gdh1-1 cosegregates with the GDH1 gene and behaves as a recessive mutation. The gdh1-1 mutant displays a conditional phenotype in that seedling growth is specifically retarded on media containing exogenously supplied inorganic nitrogen. These results suggest that GDH1 plays a nonredundant role in ammonia assimilation under conditions of inorganic nitrogen excess. This notion is further supported by the fact that the levels of mRNA for GDH1 and chloroplastic glutamine synthetase (GS2) are reciprocally regulated by light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several enzymes involved in the formation of steroids of the pregnene and pregnane series have been identified in the brain, but the biosynthesis of testosterone has never been reported in the central nervous system. In the present study, we have investigated the distribution and bioactivity of 17beta-hydroxysteroid dehydrogenase (17beta-HSD) (EC 1.1.1.62; a key enzyme that is required for the formation of testosterone and estradiol) in the brain of the male frog Rana ridibunda. By using an antiserum against human type I placental 17beta-HSD, immunoreactivity was localized in a discrete group of ependymal glial cells bordering the telencephalic ventricles. HPLC analysis of telencephalon and hypothalamus extracts combined with testosterone radioimmunoassay revealed the existence of two peaks coeluting with testosterone and 5alpha-dihydrotestosterone. After HPLC purification, testosterone was identified by gas chromatography/mass spectrometry. Incubation of telencephalon slices with [3H]pregnenolone resulted in the formation of metabolites which coeluted with progesterone, 17alpha-hydroxyprogesterone, dehydroepiandrosterone, androstenedione, testosterone, and 5alpha-dihydrotestosterone. The newly synthesized steroid comigrating with testosterone was selectively immunodetected by using testosterone antibodies. These data indicate that 17beta-HSD is expressed in a subpopulation of gliocytes in the frog telencephalon and that telencephalic cells are capable of synthesizing various androgens, including dehydroepiandrosterone, androstenedione, testosterone, and 5alpha-dihydrotestosterone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The insertion of the blood retrotransposon into the untranslated region of exon 7 of the sn-glycerol-3-phosphate dehydrogenase-encoding gene (Gpdh) in Drosophila melanogaster induces a GPDH isozyme-GPDH-4-and alters the pattern of expression of the three normal isozymes-GPDH-1 to GPDH-3. The process of transcript terminus formation inside the retrotransposon insertion reduces the level of the Gpdh transcript that contains exon 8 and increases the level of the transcript that contains exons 1-7. The induced GPDH-4 isozyme is a translation product of the three transcripts that contain fragments of the blood retrotransposon. The mechanism of mutagenesis by the blood insertion is postulated to involve the pause or termination of transcription within the blood sequence, which in turn is caused by the interference of a DNA-binding protein with the RNA polymerase. Thus, we show the formation of a new functional GPDH protein by the insertion of a transposable element and discuss the evolutionary significance of this phenomenon.