50 resultados para Null Hypothesis
Resumo:
Gene targeting was used to create mice with a null mutation of the gene encoding the common beta subunit (beta C) of the granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 3 (IL-3; multi-CSF), and interleukin 5 (IL-5) receptor complexes (beta C-/- mice). High-affinity binding of GM-CSF was abolished in beta C-/- bone marrow cells, while cells from heterozygous animals (beta C+/- mice) showed an intermediate number of high-affinity receptors. Binding of IL-3 was unaffected, confirming that the IL-3-specific beta chain remained intact. Eosinophil numbers in peripheral blood and bone marrow of beta C-/- animals were reduced, while other hematological parameters were normal. In clonal cultures of beta C-/- bone marrow cells, even high concentrations of GM-CSF and IL-5 failed to stimulate colony formation, but the cells exhibited normal quantitative responsiveness to stimulation by IL-3 and other growth factors. beta C-/- mice exhibited normal development and survived to young adult life, although they developed pulmonary peribronchovascular lymphoid infiltrates and areas resembling alveolar proteinosis. There was no detectable difference in the systemic clearance and distribution of GM-CSF between beta C-/- and wild-type littermates. The data establish that beta C is normally limiting for high-affinity binding of GM-CSF and demonstrate that systemic clearance of GM-CSF is not mediated via such high-affinity receptor complexes.
Resumo:
Disruption of retinoic acid receptor (RAR) gamma in F9 embryonal carcinoma cells leads to aberrent differentiation and reduced activation of expression of several all-trans-retinoic acid (RA)-induced genes. We have analyzed the expression of several additional RA-responsive genes in RAR alpha- and RAR gamma-null F9 cells. The RA-induced activation of Cdx1, Gap43, Stra4, and Stra6 was specifically impaired in RAR gamma-null cells, supporting the idea that each RAR may regulate distinct subsets of target genes. To further investigate the role of RAR gamma in F9 cell differentiation, "rescue" cell lines reexpressing RAR gamma 2 or overexpressing either RAR alpha 1 or RAR beta 2 were established in RAR gamma-null cells. Reexpression of RAR gamma or overexpression of RAR alpha restored both target-gene activation and the differentiation potential. In contrast, over-expression of RAR beta only poorly restored differentiation, although it could replace RAR gamma for the activation of target genes. Functional redundancy between the various RARs is discussed.
Resumo:
The yeast gene KEM1 (also named SEP1/DST2/XRN1/RAR5) produces a G4-DNA-dependent nuclease that binds to G4 tetraplex DNA structure and cuts in a single-stranded region 5' to the G4 structure. G4-DNA generated from yeast telomeric oligonucleotides competitively inhibits the cleavage reaction, suggesting that this enzyme may interact with yeast telomeres in vivo. Homozygous deletions of the KEM1 gene in yeast block meiosis at the pachytene stage, which is consistent with the hypothesis that G4 tetraplex DNA may be involved in homologous chromosome pairing during meiosis. We conjectured that the mitotic defects of kem1/sep1 mutant cells, such as a higher chromosome loss rate, are also due to failure in processing G4-DNA, especially at telomeres. Here we report two phenotypes associated with a kem1-null allele, cellular senescence and telomere shortening, that provide genetic evidence that G4 tetraplex DNA may play a role in telomere functioning. In addition, our results reveal that chromosome ends in the same cells behave differently in a fashion dependent on the KEM1 gene product.
Resumo:
Vicarious trial-and-error (VTE) is a term that Muenzinger and Tolman used to describe the rat's conflict-like behavior before responding to choice. Recently, VTE was proposed as a mechanism alternative to the concept of "cognitive map" in accounts of hippocampal function. That is, many phenomena of impaired learning and memory related to hippocampal interventions may be explained by behavioral first principles: reduced conflicting, incipient, pre-choice tendencies to approach and avoid. The nonspatial black-white discrimination learning and VTE behavior of the rat were investigated. Hippocampal-lesioned and sham-lesioned animals were trained for 25 days (20 trials per day) starting at 60 days of age. Each movement of the head from one discriminative stimulus to the other was counted as a VTE instance. Lesioned rats had fewer VTEs than sham controls, and the former learned much more slowly or never learned. After learning, VTE frequency declined. Male and female rats showed no significant differences in VTE behavior or discrimination learning.
Resumo:
An attempt has been made to put forward a unifying hypothesis explaining the role hormones play in the genesis of mammary cancers of different phenotypes and genotypes in mice, rats, and humans. Most mammary cancers in these species originate in luminal mammary epithelial cells lining the mammary ducts and alveoli. These cancers are histopathologically diverse and are classified on the basis of growth requirements as hormone-dependent or hormone-independent tumors. In most strains of mice, mammary cancers at the time of detection are largely of the hormone-independent type; in rats, almost all mammary cancers are hormone-dependent, while humans have both phenotypes. In spite of these differences, in vivo studies show that hormones (ovarian and pituitary) are essential for luminal mammary epithelial cell proliferation and also for the development of mammary cancers of both hormone-independent and hormone-dependent types. This article, based on our extensive in vivo and in vivo studies and on current literature, proposes a model to explain the central role of hormones in the genesis of all types of mammary cancers. The model attempts to address the following questions: (i) how hormones regulate luminal mammary epithelial cell proliferation, (ii) why hormones are required for the genesis of mammary cancers of all phenotypes and genotypes, including those which are always classified as hormone-independent tumors, and (iii) why the three species (mouse, rat, and human) have consistently different ratios of hormone-dependent to hormone-independent tumors.