145 resultados para Nuclear Localization Signals
Resumo:
We identified seven alternatively spliced forms of human 8-oxoguanine DNA glycosylase (OGG1) mRNAs, classified into two types based on their last exons (type 1 with exon 7: 1a and 1b; type 2 with exon 8: 2a to 2e). Types 1a and 2a mRNAs are major in human tissues. Seven mRNAs are expected to encode different polypeptides (OGG1–1a to 2e) that share their N terminus with the common mitochondrial targeting signal, and each possesses a unique C terminus. A 36-kDa polypeptide, corresponding to OGG1–1a recognized only by antibodies against the region containing helix-hairpin-helix-PVD motif, was copurified from the nuclear extract with an activity introducing a nick into DNA containing 8-oxoguanine. A 40-kDa polypeptide corresponding to a processed form of OGG1–2a was detected in their mitochondria using antibodies against its C terminus. Electron microscopic immunocytochemistry and subfractionation of the mitochondria revealed that OGG1–2a locates on the inner membrane of mitochondria. Deletion mutant analyses revealed that the unique C terminus of OGG1–2a and its mitochondrial targeting signal are essential for mitochondrial localization and that nuclear localization of OGG1–1a depends on the NLS at its C terminus.
Resumo:
The NUP98 gene encodes precursor proteins that generate two nucleoplasmically oriented nucleoporins, NUP98 and NUP96. By using gene targeting, we have selectively disrupted the murine NUP98 protein, leaving intact the expression and localization of NUP96. We show that NUP98 is essential for mouse gastrulation, a developmental stage that is associated with rapid cell proliferation, but dispensable for basal cell growth. NUP98−/− cells had an intact nuclear envelope with a normal number of embedded nuclear pore complexes. Typically, NUP98-deficient cells contained on average approximately 5-fold more cytoplasmic annulate lamellae than control cells. We found that a set of cytoplasmically oriented nucleoporins, including NUP358, NUP214, NUP88, and p62, assembled inefficiently into nuclear pores of NUP98−/− cells. Instead, these nucleoporins were prominently associated with the annulate lamellae. By contrast, a group of nucleoplasmically oriented nucleoporins, including NUP153, NUP50, NUP96, and NUP93, had no affinity for annulate lamellae and assembled normally into nuclear pores. Mutant pores were significantly impaired in transport receptor-mediated docking of proteins with a nuclear localization signal or M9 import signal and showed weak nuclear import of such substrates. In contrast, the ability of mutant pores to import ribosomal protein L23a and spliceosome protein U1A appeared intact. These observations show that NUP98 disruption selectively impairs discrete protein import pathways and support the idea that transport of distinct import complexes through the nuclear pore complex is mediated by specific subsets of nucleoporins.
Resumo:
To visualize Ca2+-dependent protein–protein interactions in living cells by fluorescence readouts, we used a circularly permuted green fluorescent protein (cpGFP), in which the amino and carboxyl portions had been interchanged and reconnected by a short spacer between the original termini. The cpGFP was fused to calmodulin and its target peptide, M13. The chimeric protein, which we have named “pericam,” was fluorescent and its spectral properties changed reversibly with the amount of Ca2+, probably because of the interaction between calmodulin and M13 leading to an alteration of the environment surrounding the chromophore. Three types of pericam were obtained by mutating several amino acids adjacent to the chromophore. Of these, “flash-pericam” became brighter with Ca2+, whereas “inverse-pericam” dimmed. On the other hand, “ratiometric-pericam” had an excitation wavelength changing in a Ca2+-dependent manner. All of the pericams expressed in HeLa cells were able to monitor free Ca2+ dynamics, such as Ca2+ oscillations in the cytosol and the nucleus. Ca2+ imaging using high-speed confocal line-scanning microscopy and a flash-pericam allowed to detect the free propagation of Ca2+ ions across the nuclear envelope. Then, free Ca2+ concentrations in the nucleus and mitochondria were simultaneously measured by using ratiometric-pericams having appropriate localization signals, revealing that extra-mitochondrial Ca2+ transients caused rapid changes in the concentration of mitochondrial Ca2+. Finally, a “split-pericam” was made by deleting the linker in the flash-pericam. The Ca2+-dependent interaction between calmodulin and M13 in HeLa cells was monitored by the association of the two halves of GFP, neither of which was fluorescent by itself.
Resumo:
Xpo1p (Crm1p) is the nuclear export receptor for proteins containing a leucine-rich nuclear export signal (NES). Xpo1p, the NES-containing protein, and GTP-bound Ran form a complex in the nucleus that translocates across the nuclear pore. We have identified Yrb1p as the major Xpo1p-binding protein in Saccharomyces cerevisiae extracts in the presence of GTP-bound Gsp1p (yeast Ran). Yrb1p is cytoplasmic at steady-state but shuttles continuously between the cytoplasm and the nucleus. Nuclear import of Yrb1p is mediated by two separate nuclear targeting signals. Export from the nucleus requires Xpo1p, but Yrb1p does not contain a leucine-rich NES. Instead, the interaction of Yrb1p with Xpo1p is mediated by Gsp1p-GTP. This novel type of export complex requires the acidic C-terminus of Gsp1p, which is dispensable for the binding to importin β-like transport receptors. A similar complex with Xpo1p and Gsp1p-GTP can be formed by Yrb2p, a relative of Yrb1p predominantly located in the nucleus. Yrb1p also functions as a disassembly factor for NES/Xpo1p/Gsp1p-GTP complexes by displacing the NES protein from Xpo1p/Gsp1p. This Yrb1p/Xpo1p/Gsp1p complex is then completely dissociated after GTP hydrolysis catalyzed by the cytoplasmic GTPase activating protein Rna1p.
Resumo:
SF3b155 is an essential spliceosomal protein, highly conserved during evolution. It has been identified as a subunit of splicing factor SF3b, which, together with a second multimeric complex termed SF3a, interacts specifically with the 12S U2 snRNP and converts it into the active 17S form. The protein displays a characteristic intranuclear localization. It is diffusely distributed in the nucleoplasm but highly concentrated in defined intranuclear structures termed “speckles,” a subnuclear compartment enriched in small ribonucleoprotein particles and various splicing factors. The primary sequence of SF3b155 suggests a multidomain structure, different from those of other nuclear speckles components. To identify which part of SF3b155 determines its specific intranuclear localization, we have constructed expression vectors encoding a series of epitope-tagged SF3b155 deletion mutants as well as chimeric combinations of SF3b155 sequences with the soluble cytoplasmic protein pyruvate kinase. Following transfection of cultured mammalian cells, we have identified (i) a functional nuclear localization signal of the monopartite type (KRKRR, amino acids 196–200) and (ii) a molecular segment with multiple threonine-proline repeats (amino acids 208–513), which is essential and sufficient to confer a specific accumulation in nuclear speckles. This latter sequence element, in particular amino acids 208–440, is required for correct subcellular localization of SF3b155 and is also sufficient to target a reporter protein to nuclear speckles. Moreover, this “speckle-targeting sequence” transfers the capacity for interaction with other U2 snRNP components.
Resumo:
We report here the different ways in which four subunits of the basal transcription/repair factor TFIIH (XPB, XPD, p62 and p44) and the damage recognition XPC repair protein can enter the nucleus. We examined their nuclear localization by transiently expressing the gene products tagged with the enhanced green fluorescent protein (EGFP) in transfected 3T3 cells. In agreement with the identification of more than one putative nuclear localization signal (NLS) in their protein sequences, XPB, XPC, p62 and p44 chimeras were rapidly sorted to the nucleus. In contrast, the XPD–EGFP chimeras appeared mainly localized in the cytoplasm, with a minor fraction of transfectants showing the EGFP-based fluorescence also in the nucleus. The ability of the XPD chimeras to enter the nucleus was confirmed by western blotting on fractionated cell extracts and by functional complementation of the repair defect in the UV5 rodent cells, mutated in the XPD homologous gene. By deletion mutagenesis, we were unable to identify any sequence specific for nuclear localization. In particular, deletion of the putative NLS failed to affect subcellular localization and, conversely, the C-terminal part of XPD containing the putative NLS showed no specific nuclear accumulation. These findings suggest that the nuclear entry of XPD depends on its complexation with other proteins in the cytoplasm, possibly other components of the TFIIH complex.
Resumo:
Phospholipase D (PLD) hydrolyzes phosphatidylcholine to generate phosphatidic acid. In mammalian cells this reaction has been implicated in the recruitment of coatomer to Golgi membranes and release of nascent secretory vesicles from the trans-Golgi network. These observations suggest that PLD is associated with the Golgi complex; however, to date, because of its low abundance, the intracellular localization of PLD has been characterized only indirectly through overexpression of chimeric proteins. We have used highly sensitive antibodies to PLD1 together with immunofluorescence and immunogold electron microscopy as well as cell fractionation to identify the intracellular localization of endogenous PLD1 in several cell types. Although PLD1 had a diffuse staining pattern, it was enriched significantly in the Golgi apparatus and was also present in cell nuclei. On fragmentation of the Golgi apparatus by treatment with nocodazole, PLD1 closely associated with membrane fragments, whereas after inhibition of PA synthesis, PLD1 dissociated from the membranes. Overexpression of an hemagglutinin-tagged form of PLD1 resulted in displacement of the endogenous enzyme from its perinuclear localization to large vesicular structures. Surprisingly, when the Golgi apparatus collapsed in response to brefeldin A, the nuclear localization of PLD1 was enhanced significantly. Our data show that the intracellular localization of PLD1 is consistent with a role in vesicle trafficking from the Golgi apparatus and suggest that it also functions in the cell nucleus.
Resumo:
Reports of nuclear tRNA aminoacylation and its role in tRNA nuclear export (Lund and Dahlberg, 1998; Sarkar et al., 1999; Grosshans et al., 2000a) have led to the prediction that there should be nuclear pools of aminoacyl-tRNA synthetases. We report that in budding yeast there are nuclear pools of tyrosyl-tRNA synthetase, Tys1p. By sequence alignments we predicted a Tys1p nuclear localization sequence and showed it to be sufficient for nuclear location of a passenger protein. Mutations of this nuclear localization sequence in endogenous Tys1p reduce nuclear Tys1p pools, indicating that the motif is also important for nucleus location. The mutations do not significantly affect catalytic activity, but they do cause defects in export of tRNAs to the cytosol. Despite export defects, the cells are viable, indicating that nuclear tRNA aminoacylation is not required for all tRNA nuclear export paths. Because the tRNA nuclear exportin, Los1p, is also unessential, we tested whether tRNA aminoacylation and Los1p operate in alternative tRNA nuclear export paths. No genetic interactions between aminoacyl-tRNA synthetases and Los1p were detected, indicating that tRNA nuclear aminoacylation and Los1p operate in the same export pathway or there are more than two pathways for tRNA nuclear export.
Resumo:
TFII-I is an unusual transcription factor possessing both basal and signal-induced transcriptional functions. Here we report the characterization of a TFII-I-related factor (MusTRD1/BEN) that regulates transcriptional functions of TFII-I by controlling its nuclear residency. MusTRD1/BEN has five or six direct repeats, each containing helix–loop–helix motifs, and, thus, belongs to the TFII-I family of transcription factors. TFII-I and MusTRD1/BEN, when expressed individually, show predominant nuclear localization. However, when the two proteins are coexpressed ectopically, MusTRD1/BEN locates almost exclusively to the nucleus, whereas TFII-I is largely excluded from the nucleus, resulting in a loss of TFII-I-dependent transcriptional activation of the c-fos promoter. Mutation of a consensus nuclear localization signal in MusTRD1/BEN results in a reversal of nuclear residency of the two proteins and a concomitant gain of c-fos promoter activity. These data suggest a means of transcriptional repression by competition at the level of nuclear occupancy.
Resumo:
HIV-1 replication requires the translocation of viral genome into the nucleus of a target cell. We recently reported the synthesis of an arylene bis(methyl ketone) compound (CNI-H0294) that inhibits nuclear targeting of the HIV-1 genome and thus HIV-1 replication in monocyte cultures. Here we demonstrate that CNI-H0294 inhibits nuclear targeting of HIV-1-derived preintegration complexes by inactivating the nuclear localization sequence of the HIV-1 matrix antigen in a reaction that absolutely requires reverse transcriptase. This drug/reverse transcriptase interaction defines the specificity of its antiviral effect and is most likely mediated by the pyrimidine side-chain of CNI-H0294. After binding to reverse transcriptase, the carbonyl groups of CNI-H0294 react with the nuclear localization sequence of matrix antigen and prevent its binding to karyopherin alpha, the cellular receptor for nuclear localization sequences that carries proteins into the nucleus. Our results provide a basis for the development of a novel class of compounds that inhibit nuclear translocation and that can, in principle, be modified to target specific infectious agents.
Resumo:
Effects of environmental stresses on the subcellular localization of PKN were investigated in NIH 3T3, BALB/c 3T3, and Rat-1 cells. The immunofluorescence of PKN resided prominently in the cytoplasmic region in nonstressed cells. When these cells were treated at 42 degrees C, there was a time-dependent decrease of the immunofluorescence of PKN in the cytoplasmic region that correlated with an increase within the nucleus as observed by confocal microscope. After incubation at 37 degrees C following beat shock, the immunofluorescence of PKN returned to the perinuclear and cytoplasmic regions from the nucleus. The nuclear translocation of PKN by heat shock was supported by the biochemical subcellular fractionation and immunoblotting. The nuclear localization of PKN was also observed when the cells were exposed to other stresses such as sodium arsenite and serum starvation. These results raise the possibility that there is a pathway mediating stress signals from the cytosol to the nucleus through PKN.
Resumo:
The nuclear import of the nuclear factor of activated T cells (NFAT)-family transcription factors is initiated by the protein phosphatase calcineurin. Here we identify a regulatory region of NFAT1, N terminal to the DNA-binding domain, that controls nuclear import of NFAT1. The regulatory region of NFAT1 binds directly to calcineurin, is a substrate for calcineurin in vitro, and shows regulated subcellular localization identical to that of full-length NFAT1. The corresponding region of NFATc likewise binds calcineurin, suggesting that the efficient activation of NFAT1 and NFATc by calcineurin reflects a specific targeting of the phosphatase to these proteins. The presence in other NFAT-family transcription factors of several sequence motifs from the regulatory region of NFAT1, including its probable nuclear localization sequence, indicates that a conserved protein domain may control nuclear import of all NFAT proteins.
Resumo:
Agrobacterium genetically transforms plant cells by transferring a single-stranded DNA (ssDNA) copy of the transferred DNA (T-DNA) element, the T-strand, in a complex with Agrobacterium proteins VirD2, bound to the 5' end, and VirE2. VirE2 binds single-stranded nucleic acid cooperatively, fully coating the T-strand, and the protein localizes to the plant cell nucleus when transiently expressed. The coupling of ssDNA binding and nuclear localizing activities suggests that VirE2 alone could mediate nuclear localization of ssDNA. In this study, fluorescently labeled ssDNA accumulated in the plant cell nucleus specifically when microinjected as a complex with VirE2. Microinjected ssDNA alone remained cytoplasmic. Import of VirE2-ssDNA complex into the nucleus via a protein import pathway was supported by (i) the inhibition of VirE2-ssDNA complex import in the presence of wheat germ agglutinin or a nonhydrolyzable GTP analog, both known inhibitors of protein nuclear import, and (ii) the retardation of import when complexes were prepared from a VirE2 mutant impaired in ssDNA binding and nuclear import.
Resumo:
In the replication of human immunodeficiency virus type 1 (HIV-1), gag MA (matrix), a major structural protein of the virus, carries out opposing targeting functions. During virus assembly, gag MA is cotranslationally myristoylated, a modification required for membrane targeting of gag polyproteins. During virus infection, however, gag MA, by virtue of a nuclear targeting signal at its N terminus, facilitates the nuclear localization of viral DNA and establishment of the provirus. We now show that phosphorylation of gag MA on tyrosine and serine prior to and during virus infection facilitates its dissociation from the membrane, thus allowing it to translocate to the nucleus. Inhibition of gag MA phosphorylation either on tyrosine or on serine prevents gag MA-mediated nuclear targeting of viral nucleic acids and impairs virus infectivity. The requirement for gag MA phosphorylation in virus infection is underscored by our finding that a serine/threonine kinase is associated with virions of HIV-1. These results reveal a novel level of regulation of primate lentivirus infectivity.
Resumo:
In search of proteins which interact with activated steroid hormone receptors, we screened a human liver lambda gt11 expression library with the glucocorticoid receptor. We identified and cloned a cDNA sequence of 1322 bp that encodes a protein of 274 aa. This protein consists predominantly of hydrophilic amino acids and contains a putative bipartite nuclear localization signal. The in vitro translated receptor-associating protein runs in SDS/polyacrylamide gels with an apparent molecular mass of 46 kDa. By use of the bacterially expressed fusion protein with glutathione S-transferase we have found that interaction is not limited to the glucocorticoid receptor but included other nuclear receptors--most notably, the estrogen and thyroid receptors. Binding also occurs with the glucocorticoid receptor complexed with the antiglucocorticoid RU 38486, with the estrogen receptor complexed with the antiestrogen 4-hydroxytamoxifen or ICI 164,384, and even with receptors not complexed with ligand. Association with steroid hormone receptors depends on prior receptor activation--i.e., release from heat shock proteins. The sequence identified here appears to be a general partner protein for nuclear hormone receptors, with the gene being expressed in a variety of mammalian tissues.