161 resultados para Noncoding Rnas
Resumo:
The human endogenous retrovirus K (HERV-K) family of endogenous retroviruses consists of ≈50 proviral copies per haploid human genome. Herein, the HERV-Ks are shown to encode a sequence-specific nuclear RNA export factor, termed K-Rev, that is functionally analogous to the HIV-1 Rev protein. Like HIV-1 Rev, K-Rev binds to both the Crm1 nuclear export factor and to a cis-acting viral RNA target to activate nuclear export of unspliced RNAs. Surprisingly, this HERV-K RNA sequence, which is encoded within the HERV-K long terminal repeat, is also recognized by HIV-1 Rev. These data provide surprising evidence for an evolutionary link between HIV-1 and a group of endogenous retroviruses that first entered the human genome ≈30 million years ago.
Resumo:
The alcohol dehydrogenase (Adh) gene family is much more complex in Pinus banksiana than in angiosperms, with at least seven expressed genes organized as two tightly linked clusters. Intron number and position are highly conserved between P. banksiana and angiosperms. Unlike angiosperm Adh genes, numerous duplications, as large as 217 bp, were observed within the noncoding regions of P. banksiana Adh genes and may be a common feature of conifer genes. A high frequency of duplication over a wide range of scales may contribute to the large genome size of conifers.
Resumo:
In this work, we report the posttranscriptional addition of poly(A)-rich sequences to mRNA in chloroplasts of higher plants. Several sites in the coding region and the mature end of spinach chloroplast psbA mRNA, which encodes the D1 protein of photosystem II, are detected as polyadenylylated sites. In eukaryotic cells, the addition of multiple adenosine residues to the 3′ end of nuclear RNA plays a key role in generating functional mRNAs and in regulating mRNA degradation. In bacteria, the adenylation of several RNAs greatly accelerates their decay. The poly(A) moiety in the chloroplast, in contrast to that in eukaryotic nuclear encoded and bacterial RNAs, is not a ribohomopolymer of adenosine residues, but clusters of adenosines bounded mostly by guanosines and rarely by cytidines and uridines; it may be as long as several hundred nucleotides. Further analysis of the initial steps of chloroplast psbA mRNA decay revealed specific endonuclease cleavage sites that perfectly matched the sites where poly(A)-rich sequences were added. Our results suggest a mechanism for the degradation of psbA mRNA in which endonucleolytic cleavages are followed by the addition of poly(A)-rich sequences to the upstream cleavage products, which target these RNAs for rapid decay.
Resumo:
Repeated, specific interactions between capsid protein (CP) subunits direct virus capsid assembly and exemplify regulated protein–protein interactions. The results presented here reveal a striking in vivo switch in CP assembly. Using cryoelectron microscopy, three-dimensional image reconstruction, and molecular modeling, we show that brome mosaic virus (BMV) CP can assemble in vivo two remarkably distinct capsids that selectively package BMV-derived RNAs in the absence of BMV RNA replication: a 180-subunit capsid indistinguishable from virions produced in natural infections and a previously unobserved BMV capsid type with 120 subunits arranged as 60 CP dimers. Each such dimer contains two CPs in distinct, nonequivalent environments, in contrast to the quasi-equivalent CP environments throughout the 180-subunit capsid. This 120-subunit capsid utilizes most of the CP interactions of the 180-subunit capsid plus nonequivalent CP–CP interactions. Thus, the CP of BMV, and perhaps other viruses, can encode CP–CP interactions that are not apparent from mature virions and may function in assembly or disassembly. Shared structural features suggest that the 120- and 180-subunit capsids share assembly steps and that a common pentamer of CP dimers may be an important assembly intermediate. The ability of a single CP to switch between distinct capsids by means of alternate interactions also implies reduced evolutionary barriers between different capsid structures. The in vivo switch between alternate BMV capsids is controlled by the RNA packaged: a natural BMV genomic RNA was packaged in 180-subunit capsids, whereas an engineered mRNA containing only the BMV CP gene was packaged in 120-subunit capsids. RNA features can thus direct the assembly of a ribonucleoprotein complex between alternate structural pathways.
Resumo:
The nicotinic acetylcholine receptor (AChR) controls signal transmission between cells in the nervous system. Abused drugs such as cocaine inhibit this receptor. Transient kinetic investigations indicate that inhibitors decrease the channel-opening equilibrium constant [Hess, G. P. & Grewer, C. (1998) Methods Enzymol. 291, 443–473]. Can compounds be found that compete with inhibitors for their binding site but do not change the channel-opening equilibrium? The systematic evolution of RNA ligands by exponential enrichment methodology and the AChR in Torpedo californica electroplax membranes were used to find RNAs that can displace inhibitors from the receptor. The selection of RNA ligands was carried out in two consecutive steps: (i) a gel-shift selection of high-affinity ligands bound to the AChR in the electroplax membrane, and (ii) subsequent use of nitrocellulose filters to which both the membrane-bound receptor and RNAs bind strongly, but from which the desired RNA can be displaced from the receptor by a high-affinity AChR inhibitor, phencyclidine. After nine selection rounds, two classes of RNA molecules that bind to the AChR with nanomolar affinities were isolated and sequenced. Both classes of RNA molecules are displaced by phencyclidine and cocaine from their binding site on the AChR. Class I molecules are potent inhibitors of AChR activity in BC3H1 muscle cells, as determined by using the whole-cell current-recording technique. Class II molecules, although competing with AChR inhibitors, do not affect receptor activity in this assay; such compounds or derivatives may be useful for alleviating the toxicity experienced by millions of addicts.
Resumo:
Despite more than a century of debate, the evolutionary position of turtles (Testudines) relative to other amniotes (reptiles, birds, and mammals) remains uncertain. One of the major impediments to resolving this important evolutionary problem is the highly distinctive and enigmatic morphology of turtles that led to their traditional placement apart from diapsid reptiles as sole descendants of presumably primitive anapsid reptiles. To address this question, the complete (16,787-bp) mitochondrial genome sequence of the African side-necked turtle (Pelomedusa subrufa) was determined. This molecule contains several unusual features: a (TA)n microsatellite in the control region, the absence of an origin of replication for the light strand in the WANCY region of five tRNA genes, an unusually long noncoding region separating the ND5 and ND6 genes, an overlap between ATPase 6 and COIII genes, and the existence of extra nucleotides in ND3 and ND4L putative ORFs. Phylogenetic analyses of the complete mitochondrial genome sequences supported the placement of turtles as the sister group of an alligator and chicken (Archosauria) clade. This result clearly rejects the Haematothermia hypothesis (a sister-group relationship between mammals and birds), as well as rejecting the placement of turtles as the most basal living amniotes. Moreover, evidence from both complete mitochondrial rRNA genes supports a sister-group relationship of turtles to Archosauria to the exclusion of Lepidosauria (tuatara, snakes, and lizards). These results challenge the classic view of turtles as the only survivors of primary anapsid reptiles and imply that turtles might have secondarily lost their skull fenestration.
Resumo:
Phylogenetic trees for groups of closely related species often have different topologies, depending on the genes used. One explanation for the discordant topologies is the persistence of polymorphisms through the speciation phase, followed by differential fixation of alleles in the resulting species. The existence of transspecies polymorphisms has been documented for alleles maintained by balancing selection but not for neutral alleles. In the present study, transspecific persistence of neutral polymorphisms was tested in the endemic haplochromine species flock of Lake Victoria cichlid fish. Putative noncoding region polymorphisms were identified at four randomly selected nuclear loci and tested on a collection of 12 Lake Victoria species and their putative riverine ancestors. At all loci, the same polymorphism was found to be present in nearly all the tested species, both lacustrine and riverine. Different polymorphisms at these loci were found in cichlids of other East African lakes (Malawi and Tanganyika). The Lake Victoria polymorphisms must have therefore arisen after the flocks now inhabiting the three great lakes diverged from one another, but before the riverine ancestors of the Lake Victoria flock colonized the Lake. Calculations based on the mtDNA clock suggest that the polymorphisms have persisted for about 1.4 million years. To maintain neutral polymorphisms for such a long time, the population size must have remained large throughout the entire period.
Resumo:
The overall folded (global) structure of mRNA may be critical to translation and turnover control mechanisms, but it has received little experimental attention. Presented here is a comparative analysis of the basic features of the global secondary structure of a synthetic mRNA and the same intracellular eukaryotic mRNA by dimethyl sulfate (DMS) structure probing. Synthetic MFA2 mRNA of Saccharomyces cerevisiae first was examined by using both enzymes and chemical reagents to determine single-stranded and hybridized regions; RNAs with and without a poly(A) tail were compared. A folding pattern was obtained with the aid of the mfold program package that identified the model that best satisfied the probing data. A long-range structural interaction involving the 5′ and 3′ untranslated regions and causing a juxtaposition of the ends of the RNA, was examined further by a useful technique involving oligo(dT)-cellulose chromatography and antisense oligonucleotides. DMS chemical probing of A and C nucleotides of intracellular MFA2 mRNA was then done. The modification data support a very similar intracellular structure. When low reactivity of A and C residues is found in the synthetic RNA, ≈70% of the same sites are relatively more resistant to DMS modification in vivo. A slightly higher sensitivity to DMS is found in vivo for some of the A and C nucleotides predicted to be hybridized from the synthetic structural model. With this small mRNA, the translation process and mRNA-binding proteins do not block DMS modifications, and all A and C nucleotides are modified the same or more strongly than with the synthetic RNA.
Resumo:
An RNA transcribed from the antisense strand of the FGF-2 gene has been implicated in the regulation of FGF-2 mRNA stability in amphibian oocytes. We have now cloned and characterized a novel 1.1-kb mRNA (fgf-as) from neonatal rat liver. In non-central nervous system (CNS) tissues the fgf-as RNA is abundantly expressed in a developmentally regulated manner. The FGF-AS cDNA contains a consensus polyadenylylation signal and a long open reading frame (ORF) whose deduced amino acid sequence predicts a 35-kDa protein with homology to the MutT family of nucleotide hydrolases. Western blot analysis with antibodies against the deduced peptide sequence demonstrates that the FGF-AS protein is expressed in a broad range of non-CNS tissue in the postnatal period. In the developing brain, the abundance of sense and antisense transcripts are inversely related, suggesting a role for the antisense RNA in posttranscriptional regulation of FGF-2 expression in this tissue.The FGF-AS is complementary to two widely separated regions in the long 3′ untranslated region of the FGF-2 mRNA, in the vicinity of the proximal and distal polyadenylylation sites. These findings demonstrate that the FGF-2 and fgf-as RNAs are coordinately transcribed on a tissue-specific and developmentally regulated basis and suggest that interaction of the sense and antisense RNAs may result in posttranscriptional regulation of FGF-2 in some tissues.
Resumo:
Like most proteins, complex RNA molecules often are modular objects made up of distinct structural and functional domains. The component domains of a protein can associate in alternative combinations to form molecules with different functions. These observations raise the possibility that complex RNAs also can be assembled from preexisting structural and functional domains. To test this hypothesis, an in vitro evolution procedure was used to isolate a previously undescribed class of complex ligase ribozymes, starting from a pool of 1016 different RNA molecules that contained a constant region derived from a large structural domain that occurs within self-splicing group I ribozymes. Attached to this constant region were three hypervariable regions, totaling 85 nucleotides, that gave rise to the catalytic motif within the evolved catalysts. The ligase ribozymes catalyze formation of a 3′,5′-phosphodiester linkage between adjacent template-bound oligonucleotides, one bearing a 3′ hydroxyl and the other a 5′ triphosphate. Ligation occurs in the context of a Watson–Crick duplex, with a catalytic rate of 0.26 min−1 under optimal conditions. The constant region is essential for catalytic activity and appears to retain the tertiary structure of the group I ribozyme. This work demonstrates that complex RNA molecules, like their protein counterparts, can share common structural domains while exhibiting distinct catalytic functions.
Resumo:
Many examples of extreme virus resistance and posttranscriptional gene silencing of endogenous or reporter genes have been described in transgenic plants containing sense or antisense transgenes. In these cases of either cosuppression or antisense suppression, there appears to be induction of a surveillance system within the plant that specifically degrades both the transgene and target RNAs. We show that transforming plants with virus or reporter gene constructs that produce RNAs capable of duplex formation confer virus immunity or gene silencing on the plants. This was accomplished by using transcripts from one sense gene and one antisense gene colocated in the plant genome, a single transcript that has self-complementarity, or sense and antisense transcripts from genes brought together by crossing. A model is presented that is consistent with our data and those of other workers, describing the processes of induction and execution of posttranscriptional gene silencing.
Resumo:
Leucine-rich nuclear export signals (NESs) are recognized by the NES receptor exportin 1 and are central to the export of multiple shuttling proteins and RNAs. The export of messenger RNA in vertebrates was, however, thought to occur by a different pathway, because inhibition by injection of a synthetic Rev NES conjugate could not be demonstrated. Here we find that peptide conjugates composed of the NES of either protein kinase A inhibitor protein (PKI) or the HIV-1 Rev protein, when coupled to human serum albumin, are potent inhibitors of mRNA and small nuclear RNA export. These results provide direct evidence that mRNA export in vertebrates depends on interactions between an NES and its cognate NES receptors. PKI NES conjugates are significantly more efficient at inhibiting RNA export than are REV NES conjugates, indicating that different NESs may have different abilities to promote protein and RNA export. Surprisingly, an expected control conjugate containing the mutant Rev NES sequence M10 strongly inhibited the export of intronless dihydrofolate reductase mRNA. Nuclear injection of NES peptide conjugates led to mislocalization to the nucleus of 10–20% of the cytoplasmic Ran GTPase-binding protein (RanBP1) indicating that RanBP1 shuttles between the nucleus and the cytoplasm via an NES pathway. These results demonstrate that in vertebrates the export of mRNA, like that of small nuclear RNA, 5S rRNA, and transport factors such as RanBP1, employs NES-mediated molecular machinery.
Resumo:
The stem-loop binding protein (SLBP1) binds the 3′ stem-loop of histone pre-mRNA and is required for efficient processing of histone transcripts in the nucleus. We examined the localization of SLBP1 in the germinal vesicle of Xenopus laevis oocytes. In spread preparations of germinal vesicle contents, an anti-SLBP1 antibody stained coiled bodies and specific chromosomal loci, including terminal granules, axial granules, and some loops. After injection of myc-tagged SLBP1 transcripts into the oocyte cytoplasm, newly translated myc-SLBP1 protein was detectable in coiled bodies within 4 h and in terminal and axial granules by 8 h. To identify the region(s) of SLBP1 necessary for subnuclear localization, we subcloned various parts of the SLBP1 cDNA and injected transcripts of these into the cytoplasm of oocytes. We determined that 113 amino acids at the carboxy terminus of SLBP1 are sufficient for coiled body localization and that disruption of a previously defined RNA-binding domain did not alter this localization. Coiled bodies also contain the U7 small nuclear ribonucleoprotein particle (snRNP), which participates in cleavage of the 3′ end of histone pre-mRNA. The colocalization of SLBP1 and the U7 snRNP in the coiled body suggests coordinated control of their functions, perhaps through a larger histone-processing particle. Some coiled bodies are attached to the lampbrush chromosomes at the histone gene loci, consistent with the view that coiled bodies in the oocyte recruit histone-processing factors to the sites of histone pre-mRNA transcription. The non-histone chromosomal sites at which SLBP1 is found include the genes coding for 5 S rRNA, U1 snRNA, and U2 snRNA, suggesting a wider role for SLBP1 in the biosynthesis of small non-spliced RNAs.
Resumo:
During oocyte maturation in Xenopus, previously quiescent maternal mRNAs are translationally activated at specific times. We hypothesized that the translational recruitment of individual messages is triggered by particular cellular events and investigated the potential for known effectors of the meiotic cell cycle to activate the translation of the FGF receptor-1 (XFGFR) maternal mRNA. We found that both c-mos and cdc2 activate the translation of XFGFR. However, although oocytes matured by injection of recombinant cdc2/cyclin B translate normal levels of XFGFR protein, c-mos depletion reduces the level of XFGFR protein induced by cdc2/cyclin B injection. In oocytes blocked for cdc2 activity, injection of mos RNA induced low levels of XFGFR protein, independent of MAPK activity. Through the use of injected reporter RNAs, we show that the XFGFR 3′ untranslated region inhibitory element is completely derepressed by cdc2 alone. In addition, we identified a new inhibitory element through which both mos and cdc2 activate translation. We found that cdc2 derepresses translation in the absence of polyadenylation, whereas mos requires poly(A) extension to activate XFGFR translation. Our results demonstrate that mos and cdc2, in addition to functioning as key regulators of the meiotic cell cycle, cooperate in the translational activation of a specific maternal mRNA during oocyte maturation.
Resumo:
We have examined the distribution of RNA transcription and processing factors in the amphibian oocyte nucleus or germinal vesicle. RNA polymerase I (pol I), pol II, and pol III occur in the Cajal bodies (coiled bodies) along with various components required for transcription and processing of the three classes of nuclear transcripts: mRNA, rRNA, and pol III transcripts. Among these components are transcription factor IIF (TFIIF), TFIIS, splicing factors, the U7 small nuclear ribonucleoprotein particle, the stem–loop binding protein, SR proteins, cleavage and polyadenylation factors, small nucleolar RNAs, nucleolar proteins that are probably involved in pre-rRNA processing, and TFIIIA. Earlier studies and data presented here show that several of these components are first targeted to Cajal bodies when injected into the oocyte and only subsequently appear in the chromosomes or nucleoli, where transcription itself occurs. We suggest that pol I, pol II, and pol III transcription and processing components are preassembled in Cajal bodies before transport to the chromosomes and nucleoli. Most components of the pol II transcription and processing pathway that occur in Cajal bodies are also found in the many hundreds of B-snurposomes in the germinal vesicle. Electron microscopic images show that B-snurposomes consist primarily, if not exclusively, of 20- to 30-nm particles, which closely resemble the interchromatin granules described from sections of somatic nuclei. We suggest the name pol II transcriptosome for these particles to emphasize their content of factors involved in synthesis and processing of mRNA transcripts. We present a model in which pol I, pol II, and pol III transcriptosomes are assembled in the Cajal bodies before export to the nucleolus (pol I), to the B-snurposomes and eventually to the chromosomes (pol II), and directly to the chromosomes (pol III). The key feature of this model is the preassembly of the transcription and processing machinery into unitary particles. An analogy can be made between ribosomes and transcriptosomes, ribosomes being unitary particles involved in translation and transcriptosomes being unitary particles for transcription and processing of RNA.