49 resultados para Nerve trajectory
Resumo:
In Drosophila the response to the hormone ecdysone is mediated in part by Ultraspiracle (USP) and ecdysone receptor (EcR), which are members of the nuclear receptor superfamily. Heterodimers of these proteins bind to ecdysone response elements (EcREs) and ecdysone to modulate transcription. Herein we describe Drosophila hormone receptor 38 (DHR38) and Bombyx hormone receptor 38 (BHR38), two insect homologues of rat nerve growth factor-induced protein B (NGFI-B). Although members of the NGFI-B family are thought to function exclusively as monomers, we show that DHR38 and BHR38 in fact interact strongly with USP and that this interaction is evolutionarily conserved. DHR38 can compete in vitro against EcR for dimerization with USP and consequently disrupt EcR-USP binding to an EcRE. Moreover, transfection experiments in Schneider cells show that DHR38 can affect ecdysone-dependent transcription. This suggests that DHR38 plays a role in the ecdysone response and that more generally NGFI-B type receptors may be able to function as heterodimers with retinoid X receptor type receptors in regulating transcription.
Resumo:
Nerve growth cones isolated from fetal rat brain are highly enriched in a 97-kDa glycoprotein, termed beta gc, that comigrates with the beta subunit of the IGF-I receptor upon two-dimensional PAGE and is disulfide-linked to this receptor's alpha subunit. Antibodies prepared to a conserved domain shared by the insulin and IGF-I receptor beta subunits (AbP2) or to beta gc were used to study receptor distribution further. Subcellular fractionation of the fetal brain segregated most AbP2 immunoreactivity away from growth cones, whereas most beta gc immunoreactivity copurified with growth cones. Experiments involving ligand-activated receptor autophosphorylation confirmed the concentration of IGF-I but not of insulin receptors in growth cone fractions. These results indicate the enrichment of IGF-I receptors in (presumably axonal) growth cones of the differentiating neuron. Furthermore, the segregation of beta gc from AbP2 immunoreactivity suggests that such neurons express an immunochemically distinct variant of the IGF-I receptor beta subunit at the growth cone.
Resumo:
Grafts of favorable axonal growth substrates were combined with transient nerve growth factor (NGF) infusions to promote morphological and functional recovery in the adult rat brain after lesions of the septohippocampal projection. Long-term septal cholinergic neuronal rescue and partial hippocampal reinnervation were achieved, resulting in partial functional recovery on a simple task assessing habituation but not on a more complex task assessing spatial reference memory. Control animals that received transient NGF infusions without axonal-growth-promoting grafts lacked behavioral recovery but also showed long-term septal neuronal rescue. These findings indicate that (i) partial recovery from central nervous system injury can be induced by both preventing host neuronal loss and promoting host axonal regrowth and (ii) long-term neuronal loss can be prevented with transient NGF infusions.
Resumo:
We have molecularly cloned a calcium sensing receptor (CaSR) from a rat striatal cDNA library. Rat CaSR displays 92% overall homology to its bovine counterpart with seven putative transmembrane domains characteristic of the superfamily of guanine nucleotide-binding proteins and significant homology with the metabotropic glutamate receptors. Northern blot analysis reveals two transcripts in thyroid, kidney, lung, ileum, and pituitary. In brain highest regional expression of the RNA occurs in the hypothalamus and the corpus striatum. Immunohistochemistry reveals discrete punctate localizations throughout the brain that appear to be associated with nerve terminals. No staining is evident in cell bodies of neurons or glia. Cerebral arteries display an intense network of CaSR immunoreactive fibers associated with vessel innervation. CaSR on nerve terminal membranes may regulate neurotransmitter disposition in response to Ca2+ levels in the synaptic space.