52 resultados para MICROTUBULE-STABILIZING MACROLIDE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present evidence that the microtubule-associated protein tau is present in oligodendrocytes (OLGs), the central nervous system cells that make myelin. By showing that tau is distributed in a pattern similar to that of myelin basic protein, our results suggest a possible involvement of tau in some aspect of myelination. Tau protein has been identified in OLGs in situ and in vitro. In interfascicular OLGs, tau localization, revealed by monoclonal antibody Tau-5, was confined to the cell somata. However, in cultured ovine OLGs with an exuberant network of processes, tau was detected in cell somata, cellular processes, and membrane expansions at the tips of these processes. Moreover, in such cultures, tau appeared localized adjacent to or coincident with myelin basic protein in membrane expansions along and at the ends of the cellular processes. The presence of tau mRNA was documented using fluorescence in situ hybridization. The distribution of the tau mRNA was similar to that of the tau protein. Western blot analysis of cultured OLGs showed the presence of many tau isoforms. Together, these results demonstrate that tau is a genuine oligodendrocyte protein and pave the way for determining its functional role in these cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using indirect immunofluorescence microscopy and biochemical techniques, we have determined that approximately one-third of the total mitogen-activated protein kinase (MAPK) is associated with the microtubule cytoskeleton in NIH 3T3 mouse fibroblasts. This population of enzyme can be separated from the soluble form that is found distributed throughout the cytosol and is also present in the nucleus after mitogen stimulation. The microtubule-associated enzyme pool constitutes half of all detectable MAPK activity after mitogenic stimulation. These findings extend the known in vivo associations of MAPK with microtubules to include the entire microtubule cytoskeleton of proliferating cells, and they suggest that a direct association of MAPK with microtubules may be in part responsible for the observed correlations between MAPK activities and cytoskeletal alteration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the hallmarks of Alzheimer disease is the pathological aggregation of tau protein into paired helical filaments (PHFs) and neurofibrillary tangles. Here we describe the in vitro assembly of recombinant tau protein and constructs derived from it into PHFs. Though whole tau assembled poorly, constructs containing three internal repeats (corresponding to the fetal tau isoform) formed PHFs reproducibly. This ability depended on intermolecular disulfide bridges formed by the single Cys-322. Blocking the SH group, mutating Cys for Ala, or keeping tau in a reducing environment all inhibited assembly. With constructs derived from four-repeat tau (having the additional repeat no. 2 and a second Cys-291), PHF assembly was blocked because Cys-291 and Cys-322 interact within the molecule. PHF assembly was enabled again by mutating Cys-291 for Ala. The synthetic PHFs bound the dye thioflavin S used in Alzheimer disease diagnostics. The data imply that the redox potential in the neuron is crucial for PHF assembly, independently or in addition to pathological phosphorylation reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular modeling has been used to predict that 2,6-disubstituted amidoanthraquinones, and not the 1,4 series, should preferentially interact with and stabilize triple-stranded DNA structures over duplex DNA. This is due to marked differences in the nature of chromophore-base stacking and groove accessibility for the two series. A DNA foot-printing method that monitors the extent of protection from DNase I cleavage on triplex formation has been used to examine the effects of a number of synthetic isomer compounds in the 1,4 and 2,6 series. The experimental results are in accord with the predicted behavior and confirm that the 1,4 series bind preferentially to double- rather than triple-stranded DNA, whereas the isomeric 2,6 derivatives markedly favor binding to triplex DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microtubule asters forming the mitotic spindle are assembled around two centrosomes through the process of dynamic instability in which microtubules alternate between growing and shrinking states. By modifying the dynamics of this assembly process, cell cycle enzymes, such as cdc2 cyclin kinases, regulate length distributions in the asters. It is believed that the same enzymes control the number of assembled microtubules by changing the "nucleating activity" of the centrosomes. Here we show that assembly of microtubule asters may be strongly altered by effects connected with diffusion of tubulin monomers. Theoretical analysis of a simple model describing assembly of microtubule asters clearly shows the existence of a region surrounding the centrosome depleted in GTP tubulin. The number of assembled microtubules may in some cases be limited by this depletion effect rather than by the number of available nucleation sites on the centrosome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paclitaxel (formerly called taxol), an important anticancer drug, inhibits cell replication by binding to and stabilizing microtubule polymers. As drug-receptor interactions are governed by the three-dimensional stereochemistries of both participants, we have determined the crystal structure of paclitaxel to identify its conformational preferences that may be related to biological activity. The monoclinic crystals contain two independent paclitaxel molecules in the asymmetric unit plus several water and dioxane solvent molecules. Taxane ring conformation is very similar in both paclitaxel molecules and is similar to the taxane ring conformation found in the crystal structure of the paclitaxel analogue docetaxel (formerly called taxotere). The two paclitaxel molecules have carbon-13 side-chain conformations that differ from each other and from that of the corresponding side chain in the docetaxel crystal structure. The carbon-13 side-chain conformation of one paclitaxel molecule is similar to what was proposed from NMR studies done in polar solvents, while that of the other paclitaxel molecule is different and hitherto unobserved. The paclitaxel molecules interact with each other and with solvent atoms through an extensive network of hydrogen bonds. Analysis of the hydrogen-bonding network together with structure-activity studies may suggest which atoms of paclitaxel are important for binding to microtubule receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isozyme form of eukaryotic initiation factor 4F [eIF-(iso)4F] from wheat germ is composed of a p28 subunit that binds the 7-methylguanine cap of mRNA and a p86 subunit having unknown function. The p86 subunit was found to have limited sequence similarity to a kinesin-like protein encoded by the katA gene of Arabidopsis thaliana. Native wheat germ eIF-(iso)4F and bacterially expressed p86 subunit and p86-p28 complex bound to taxol-stabilized maize microtubules (MTs) in vitro. Binding saturation occurred at 1 mol of p86 per 5-6 mol of polymerized tubulin dimer, demonstrating a substoichiometric interaction of p86 with MTs. No evidence was found for a direct interaction of the p28 subunit with MTs. Unlike kinesin, cosedimentation of eIF-(iso)4F with MTs was neither reduced by MgATP nor enhanced by adenosine 5'-[gamma-imido]triphosphate. Both p86 subunit and p86-p28 complex induced the bundling of MTs in vitro. The p86 subunit was immunolocalized to the cytosol in root maize cells and existed in three forms: fine particles, coarse particles, and linear patches. Many coarse particles and linear patches were colocalized or closely associated with cortical MT bundles in interphase cells. The results indicate that the p86 subunit of eIF-(iso)4F is a MT-associated protein that may simultaneously link the translational machinery to the cytoskeleton and regulate MT disposition in plant cells.