75 resultados para MELANOMA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ras-related small GTPases Rac, Rho, Cdc42, and RalA bind filamin, an actin filament-crosslinking protein that also links membrane and other intracellular proteins to actin. Of these GTPases only RalA binds filamin in a GTP-specific manner, and GTP-RalA elicits actin-rich filopods on surfaces of Swiss 3T3 cells and recruits filamin into the filopodial cytoskeleton. Either a dominant negative RalA construct or the RalA-binding domain of filamin 1 specifically block Cdc42-induced filopod formation, but a Cdc42 inhibitor does not impair RalA’s effects, which, unlike Cdc42, are Rac independent. RalA does not generate filopodia in filamin-deficient human melanoma cells, whereas transfection of filamin 1 restores the functional response. RalA therefore is a downstream intermediate in Cdc42-mediated filopod production and uses filamin in this pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concomitant tumor resistance refers to the ability of some large primary tumors to hold smaller tumors in check, preventing their progressive growth. Here, we demonstrate this phenomenon with a human tumor growing in a nude mouse and show that it is caused by secretion by the tumor of the inhibitor of angiogenesis, thrombospondin-1. When growing subcutaneously, the human fibrosarcoma line HT1080 induced concomitant tumor resistance, preventing the growth of experimental B16/F10 melanoma metastases in the lung. Resistance was due to the production by the tumor cells themselves of high levels of thrombospondin-1, which was present at inhibitory levels in the plasma of tumor-bearing animals who become unable to mount an angiogenic response in their corneas. Animals carrying tumors formed by antisense-derived subclones of HT1080 that secreted low or no thrombospondin had weak or no ability to control the growth of lung metastases. Although purified human platelet thrombospondin-1 had no effect on the growth of melanoma cells in vitro, when injected into mice it was able to halt the growth of their experimental metastases, providing clear evidence of the efficacy of thrombospondin-1 as an anti-tumor agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell adhesion molecules (CAMs) mediate cell attachment and stress transfer through extracellular domains. Here we forcibly unfold the Ig domains of a prototypical Ig superfamily CAM that contains intradomain disulfide bonds. The Ig domains of all such CAMs have conformations homologous to cadherin extracellular domains, titin Ig-type domains, and fibronectin type-III (FNIII) domains. Atomic force microscopy has been used to extend the five Ig domains of Mel-CAM (melanoma CAM)—a protein that is overexpressed in metastatic melanomas—under conditions where the disulfide bonds were either left intact or disrupted through reduction. Under physiological conditions where intradomain disulfide bonds are intact, partial unfolding was observed at forces far smaller than those reported previously for either titin's Ig-type domains or tenascin's FNIII domains. This partial unfolding under low force may be an important mechanism for imparting elasticity to cell–cell contacts, as well as a regulatory mechanism for adhesive interactions. Under reducing conditions, Mel-CAM's Ig domains were found to fully unfold through a partially folded state and at slightly higher forces. The results suggest that, in divergent evolution of all such domains, stabilization imparted by disulfide bonds relaxes requirements for strong, noncovalent, folded-state interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pierisin-1 is an 850-aa cytotoxic protein found in the cabbage butterfly, Pieris rapae, and has been suggested to consist of an N-terminal region with ADP-ribosyltransferase domain and of a C-terminal region that might have a receptor-binding domain. To elucidate the role of each region, we investigated the functions of various fragments of pierisin-1. In vitro expressed polypeptide consisting of amino acid residues 1–233 or 234–850 of pierisin-1 alone did not show cytotoxicity against human cervical carcinoma HeLa cells. However, the presence of both polypeptides in the culture medium showed some of the original cytotoxic activity. Introduction of the N-terminal polypeptide alone by electroporation also induced cell death in HeLa cells, and even in the mouse melanoma MEB4 cells insensitive to pierisin-1. Thus, the N-terminal region has a principal role in the cytotoxicity of pierisin-1 inside mammalian cells. Analyses of incorporated pierisin-1 indicated that the entire protein, regardless of whether it consisted of a single polypeptide or two separate N- and C-terminal polypeptides, was incorporated into HeLa cells. However, neither of the terminal polypeptides was incorporated when each polypeptide was present separately. These findings indicate that the C-terminal region is important for the incorporation of pierisin-1. Moreover, presence of receptor for pierisin-1 in the lipid fraction of cell membrane was suggested. The cytotoxic effects of pierisin-1 were enhanced by previous treatment with trypsin, producing “nicked” pierisin-1. Generation of the N-terminal fragment in HeLa cells was detected after application of intact entire molecule of pierisin-1. From the above observations, it is suggested that after incorporation of pierisin-1 into the cell by interaction of its C-terminal region with the receptor in the cell membrane, the entire protein is cleaved into the N- and C-terminal fragments with intracellular protease, and the N-terminal fragment then exhibits cytotoxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NY-ESO-1 is a tumor-specific shared antigen with distinctive immunogenicity. Both CD8+ T cells and class-switched Ab responses have been detected from patients with cancer. In this study, a CD4+ T cell line was generated from peripheral blood mononuclear cells of a melanoma patient and was shown to recognize NY-ESO-1 peptides presented by HLA-DP4, a dominant MHC class II allele expressed in 43–70% of Caucasians. The ESO p157–170 peptide containing the core region of DP4-restricted T cell epitope was present in a number of tumor cell lines tested and found to be recognized by both CD4+ T cells as well as HLA-A2-restricted CD8+ T cells. Thus, the ESO p157–170 epitope represents a potential candidate for cancer vaccines aimed at generating both CD4+ and CD8+ T cell responses. More importantly, 16 of 17 melanoma patients who developed Ab against NY-ESO-1 were found to be HLA-DP4-positive. CD4+ T cells specific for the NY-ESO-1 epitopes were generated from 5 of 6 melanoma patients with NY-ESO-1 Ab. In contrast, no specific DP4-restricted T cells were generated from two patients without detectable NY-ESO-1 Ab. These results suggested that NY-ESO-1-specific DP4-restricted CD4+ T cells were closely associated with NY-ESO-1 Ab observed in melanoma patients and might play an important role in providing help for activating B cells for NY-ESO-1-specific Ab production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used a yeast two-hybrid approach to uncover protein interactions involving the D2-like subfamily of dopamine receptors. Using the third intracellular loop of the D2S and D3 dopamine receptors as bait to screen a human brain cDNA library, we identified filamin A (FLN-A) as a protein that interacts with both the D2 and D3 subtypes. The interaction with FLN-A was specific for the D2 and D3 receptors and was independently confirmed in pull-down and coimmunoprecipitation experiments. Deletion mapping localized the dopamine receptor–FLN-A interaction to the N-terminal segment of the D2 and D3 dopamine receptors and to repeat 19 of FLN-A. In cultures of dissociated rat striatum, FLN-A and D2 receptors colocalized throughout neuronal somata and processes as well as in astrocytes. Expression of D2 dopamine receptors in FLN-A-deficient M2 melanoma cells resulted in predominant intracellular localization of the D2 receptors, whereas in FLN-A-reconstituted cells, the D2 receptor was predominantly localized at the plasma membrane. These results suggest that FLN-A may be required for proper cell surface expression of the D2 dopamine receptors. Association of D2 and D3 dopamine receptors with FLN-A provides a mechanism whereby specific dopamine receptor subtypes may be functionally linked to downstream signaling components via the actin cytoskeleton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oncolytic herpes simplex virus type 1 (HSV-1) vectors are promising therapeutic agents for cancer. Their efficacy depends on the extent of both intratumoral viral replication and induction of a host antitumor immune response. To enhance these properties while employing ample safeguards, two conditionally replicating HSV-1 vectors, termed G47Δ and R47Δ, have been constructed by deleting the α47 gene and the promoter region of US11 from γ34.5-deficient HSV-1 vectors, G207 and R3616, respectively. Because the α47 gene product is responsible for inhibiting the transporter associated with antigen presentation (TAP), its absence led to increased MHC class I expression in infected human cells. Moreover, some G47Δ-infected human melanoma cells exhibited enhanced stimulation of matched antitumor T cell activity. The deletion also places the late US11 gene under control of the immediate-early α47 promoter, which suppresses the reduced growth properties of γ34.5-deficient mutants. G47Δ and R47Δ showed enhanced viral growth in a variety of cell lines, leading to higher virus yields and enhanced cytopathic effect in tumor cells. G47Δ was significantly more efficacious in vivo than its parent G207 at inhibiting tumor growth in both immune-competent and immune-deficient animal models. Yet, when inoculated into the brains of HSV-1-sensitive A/J mice at 2 × 106 plaque forming units, G47Δ was as safe as G207. These results suggest that G47Δ may have enhanced antitumor activity in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) is a potent endothelial cell mitogen and key regulator of both physiologic and pathologic (e.g., tumor) angiogenesis. In the course of studies designed to assess the ability of constitutive VEGF to block tumor regression in an inducible RAS melanoma model, mice implanted with VEGF-expressing tumors sustained high morbidity and mortality that were out of proportion to the tumor burden. Documented elevated serum levels of VEGF were associated with a lethal hepatic syndrome characterized by massive sinusoidal dilation and endothelial cell proliferation and apoptosis. Systemic levels of VEGF correlated with the severity of liver pathology and overall clinical compromise. A striking reversal of VEGF-induced liver pathology and prolonged survival were achieved by surgical excision of VEGF-secreting tumor or by systemic administration of a potent VEGF antagonist (VEGF-TRAPR1R2), thus defining a paraneoplastic syndrome caused by excessive VEGF activity. Moreover, this VEGF-induced syndrome resembles peliosis hepatis, a rare human condition that is encountered in the setting of advanced malignancies, high-dose androgen therapy, and Bartonella henselae infection. Thus, our findings in the mouse have suggested an etiologic role for VEGF in this disease and may lead to diagnostic and therapeutic options for this debilitating condition in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report describes a tumor-associated antigen, termed CML66, initially cloned from a chronic myelogenous leukemia (CML) cDNA expression library. CML66 encodes a 583-aa protein with a molecular mass of 66 kDa and no significant homology to other known genes. CML66 gene is localized to human chromosome 8q23, but the function of this gene is unknown. CML66 is expressed in leukemias and a variety of solid tumor cell lines. When examined by Northern blot, expression in normal tissues was restricted to testis and heart, and no expression was found in hematopoietic tissues. When examined by quantitative reverse transcription–PCR, expression in CML cells was 1.5-fold higher than in normal peripheral blood mononuclear cells. The presence of CML66-specific antibody in patient serum was confirmed by Western blot and the development of high titer IgG antibody specific for CML66 correlated with immune induced remission of CML in a patient who received infusion of normal donor lymphocytes for treatment of relapse. CML66 antibody also was found in sera from 18–38% of patients with lung cancer, melanoma, and prostate cancer. These findings suggest that CML66 may be immunogenic in a wide variety of malignancies and may be a target for antigen-specific immunotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Messenger RNA transcripts of the highly pigmented murine melanoma B16-F1 cells were compared with those from their weakly pigmented derivative B16-F10 cells by differential display. A novel gene called msg1 (melanocyte-specific gene) was found to be expressed at high levels in B16-F1 cells but at low levels in B16-F10 cells. Expression of msg1 was undetectable in the amelanotic K1735 murine melanoma cells. The pigmented murine melanocyte cell line melan-a expressed msg1, as did pigmented primary cultures of murine and human melanocytes; however, seven amelanotic or very weakly pigmented human melanoma cell lines were negative. Transformation of murine melanocytes by transfection with v-Ha-ras or Ela was accompanied by depigmentation and led to complete loss of msg1 expression. The normal tissue distribution of msg1 mRNA transcripts in adult mice was confined to melanocytes and testis. Murine msg1 and human MSG1 genes encode a predicted protein of 27 kDa with 75% overall amino acid identity and 96% identity within the C-terminal acidic domain of 54 amino acids. This C-terminal domain was conserved with 76% amino acid identity in another protein product of a novel human gene, MRG1 (msg1-related gene), isolated from normal human melanocyte cDNA by 5'-rapid amplification of cDNA ends based on the homology to msg1. The msg1 protein was localized to the melanocyte nucleus by immunofluorescence cytochemistry. We conclude that msg1 encodes a nuclear protein, is melanocyte-specific, and appears to be lost in depigmented melanoma cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a series of new in vitro and in vivo data proving the selective antitumor activity of our somatostatin structural derivative, TT-232. In vitro, it inhibited the proliferation of 20 different human tumor cell lines in the range of 50-95% and induced a very strong apoptosis. In vivo TT-232 was effective on transplanted animal tumors (Colon 26, B16 melanoma, and S180 sarcoma) and on human tumor xenografts. Treatment of MDA-MB-231 human breast cancer xenografted in mice with low submaximal doses of TT-232 [0.25 and 0.5 mg/kg of body weight (b.w.)] caused an average 80% decrease in the tumor volume resulting in 30% tumor-free animals surviving for longer than 200 days. Treatment of prostate tumor (PC-3) xenografted animals with 20 mg/kg of b.w. of TT-232 for 3 weeks resulted in 60% decrease in tumor volume and 100% survival even after 60 days, while 80% of nontreated animals perished. We have demonstrated that TT-232 did not bind to the membrane preparation of rat pituitary and cortex and had no antisecretory activity. TT-232 was not toxic at a dose of 120 mg/kg of b.w. in mice. Long-term incubation (24 h) of tumor cells with TT-232 caused significant inhibition of tyrosine kinases in good correlation with the apoptosis-inducing effect. The level of p53 or KU86 did not change following TT-232 treatment, suggesting a p53-independent apoptotic effect. Preincubation of human breast cancer cells (MDA-MB-453) with TT-232 for 2 h decreased the growth factor receptor autophosphorylation. All of these data suggest that TT-232 is a promising and selective antitumor agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vaccination with cytokine-producing tumor cells generates potent immune responses against tumors outside the central nervous system (CNS). The CNS, however, is a barrier to allograft and xenograft rejection, and established tumors within the CNS have failed to respond to other forms of systemic immunotherapy. To determine what barriers the "immunologically privileged" CNS would pose to cytokine-assisted tumor vaccines and what cytokines would be most efficacious against tumors within the CNS, we irradiated B16 murine melanoma cells producing murine interleukin 2 (IL-2), IL-3, IL-4, IL-6, gamma-interferon, or granulocyte-macrophage colony stimulating factor (GM-CSF) and used these cells as subcutaneous vaccines against tumors within the brain. Under conditions where untransfected B16 cells had no effect, cells producing IL-3, IL-6, or GM-CSF increased the survival of mice challenged with viable B16 cells in the brain. Vaccination with B16 cells producing IL-4 or gamma-interferon had no effect, and vaccination with B16 cells producing IL-2 decreased survival time. GM-CSF-producing vaccines were also able to increase survival in mice with pre-established tumors. The response elicited by GM-CSF-producing vaccines was found to be specific to tumor type and to be abrogated by depletion of CD8+ cells. Unlike the immunity generated against subcutaneous tumors by GM-CSF, however, the effector responses generated against tumors in the CNS were not dependent on CD4+ cells. These data suggest that cytokine-producing tumor cells are very potent stimulators of immunity against tumors within the CNS, but effector responses in the CNS may be different from those obtained against subcutaneous tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major hurdle to be cleared in active immunotherapy of cancer is the poor immunogenicity of cancer cells. In previous attempts to overcome this problem, whole tumor cells have been used as vaccines, either admixed with adjuvant(s) or genetically engineered to express nonself proteins or immunomodulatory factors before application. We have developed a novel approach to generate an immunogeneic, highly effective vaccine: major histocompatibility complex (MHC) class I-positive cancer cells are administered together with MHC class I-matched peptide ligands of foreign, nonself origin, generated by a procedure we term transloading. Murine tumor lines of the H2-Kd or the H2-Db haplotype, melanoma M-3 and B16-F10, respectively, as well as colon carcinoma CT-26 (H2-Kd), were transloaded with MHC-matched influenza virus-derived peptides and applied as irradiated vaccines. Mice bearing a deposit of live M-3 melanoma cells were efficiently cured by this treatment. In the CT-26 colon carcinoma and the B16-F10 melanoma, high efficacies were obtained against tumor challenge, suggesting the universal applicability of this new type of vaccine. With foreign peptide ligands adapted to the requirements of a desired MHC class I haplotype, this concept may be used for the treatment of human cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocular albinism type 1 (OA1) is an inherited disorder characterized by severe reduction of visual acuity, photophobia, and retinal hypopigmentation. Ultrastructural examination of skin melanocytes and of the retinal pigment epithelium reveals the presence of macromelanosomes, suggesting a defect in melanosome biogenesis. The gene responsible for OA1 is exclusively expressed in pigment cells and encodes a predicted protein of 404 aa displaying several putative transmembrane domains and sharing no similarities with previously identified molecules. Using polyclonal antibodies we have identified the endogenous OA1 protein in retinal pigment epithelial cells, in normal human melanocytes and in various melanoma cell lines. Two forms of the OA1 protein were identified by Western analysis, a 60-kDa glycoprotein and a doublet of 48 and 45 kDa probably corresponding to unglycosylated precursor polypeptides. Upon subcellular fractionation and phase separation with the nonionic detergent Triton X-114, the OA1 protein segregated into the melanosome-rich fraction and behaved as an authentic integral membrane protein. Immunofluorescence and immunogold analyses on normal human melanocytes confirmed the melanosomal membrane localization of the endogenous OA1 protein, consistent with its possible involvement in melanosome biogenesis. The identification of a novel melanosomal membrane protein involved in a human disease will provide insights into the mechanisms that control the cell-specific pathways of subcellular morphogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell adhesion has a fundamental role in the proliferation and motility of normal cells and the metastasis of tumor cells. To identify signaling pathways activated by the adherence of tumor cells, we analyzed the tyrosine phosphorylation of proteins in mouse melanoma cells before and after attachment to substrata. We discovered that cellular adherence activated the protein-tyrosine kinase of the cell surface receptor Met, whose ligand is hepatocyte growth factor and scatter factor. The activation was exceedingly prompt, affected the great majority of Met in the cells, persisted so long as the cells remained adherent, and was rapidly reversed as soon as the cells were detached from substrata. Activation of Met required that cells be adherent but not that they spread on the substratum, and it occurred in the absence of any apparent ligand for the receptor. Ligand-independent activation of Met occurred in several varieties of tumor cells but not in normal endothelial cells that express the receptor. The activation of Met described here may represent a means by which cells respond to mechanical as opposed to biochemical stimuli.