73 resultados para Low-Density Lipoprotein Receptor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian class A macrophage-specific scavenger receptors (SR-A) exhibit unusually broad binding specificity for a wide variety of polyanionic ligands. The properties of these receptors suggest that they may be involved in atherosclerosis and host defense. We have previously observed a similar receptor activity in Drosophila melanogaster embryonic macrophages and in the Drosophila macrophage-like Schneider L2 cell line. Expression cloning was used to isolate from L2 cells a cDNA that encodes a third class (class C) of scavenger receptor, Drosophila SR-CI (dSR-CI). dSR-CI expression was restricted to macrophages/hemocytes during embryonic development. When expressed in mammalian cells, dSR-CI exhibited high affinity and saturable binding of 125I-labeled acetylated low density lipoprotein and mediated its chloroquine-dependent, presumably lysosomal, degradation. Although the broad polyanionic ligand-binding specificity of dSR-CI was similar to that of SR-A, their predicted protein sequences are not similar. dSR-CI is a 609-residue type I integral membrane protein containing several well-known sequence motifs, including two complement control protein (CCP) domains and somatomedin B, MAM, and mucin-like domains. Macrophage scavenger receptors apparently mediate important, well-conserved functions and may be pattern-recognition receptors that arose early in the evolution of host-defense mechanisms. Genetic and physiologic analysis of dSR-CI function in Drosophila should provide further insights into the roles played by scavenger receptors in host defense and development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anti-atherogenic role of high density lipoprotein is well known even though the mechanism has not been established. In this study, we have used a novel model system to test whether removal of lipoprotein cholesterol from a localized depot will be affected by apolipoprotein A-I (apo A-I) deficiency. We compared the egress of cholesterol injected in the form of cationized low density lipoprotein into the rectus femoris muscle of apo A-I K-O and control mice. When the injected lipoprotein had been labeled with [3H]cholesterol, the t½ of labeled cholesterol loss from the muscle was about 4 days in controls and more than 7 days in apo A-I K-O mice. The loss of cholesterol mass had an initial slow (about 4 days) and a later more rapid component; after day 4, the disappearance curves for apo A-I K-O and controls began to diverge, and by day 7, the loss of injected cholesterol was significantly slower in apo A-I K-O than in controls. The injected lipoprotein cholesterol is about 70% in esterified form and undergoes hydrolysis, which by day 4 was similar in control and apo A-I K-O mice. The efflux potential of serum from control and apo A-I K-O mice was studied using media containing 2% native or delipidated serum. A significantly lower efflux of [3H]cholesterol from macrophages was found with native and delipidated serum from apo A-I K-O mice. In conclusion, these findings show that lack of apo A-I results in a delay in cholesterol loss from a localized depot in vivo and from macrophages in culture. These results provide support for the thesis that anti-atherogenicity of high density lipoprotein is related in part to its role in cholesterol removal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Class I MHC protein primarily presents endogenous antigen but also may present exogenous antigen. Here, we investigated the intracellular pathway of spontaneously internalized class I MHC protein by confocal microscopy. β2-microglobulin (β2m), labeled with a single fluorophore, was exchanged at the surface of B cell transfectants to specifically mark cell surface and endocytosed class I MHC protein. Intracellular β2m colocalized with fluorophore-conjugated transferrin, implying that class I MHC protein endocytosed into early endosomes. These endosomes containing fluorescent β2m were found close to or within the Golgi apparatus, marked by fluorescent ceramide. Even after 24 hr of incubation, very little fluorescent β2m was found in intracellular organelles stained by DiOC6, marking the endoplasmic reticulum, or fluorophore-conjugated low density lipoprotein, marking late endosomes and lysosomes. Fluorophore-conjugated superantigens (staphylococcal enterotoxin A and B), presumed to enter cells bound to class II MHC protein, also were found to endocytose into β2m-containing early endosomes. Staining with mAb and use of transfectants expressing MHC protein attached to green fluorescent protein confirmed the presence of intracellular compartments rich in both class I and II MHC protein and demonstrated that class I and II MHC protein also colocalize in discrete microdomains at the cell surface. These cell surface microdomains also contained transferrin receptor and often were juxtaposed to cholesterol-rich lipid rafts. Thus, class I and II MHC protein meet in microdomains of the plasma membrane and endocytose into early endosomes, where both may acquire and present exogenous antigen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apolipoprotein (apo) A-II is the second most abundant apolipoprotein in high density lipoprotein (HDL). To study its role in lipoprotein metabolism and atherosclerosis susceptibility, apo A-II knockout mice were created. Homozygous knockout mice had 67% and 52% reductions in HDL cholesterol levels in the fasted and fed states, respectively, and HDL particle size was reduced. Metabolic turnover studies revealed the HDL decrease to be due to both decreased HDL cholesterol ester and apo A-I transport rate and increased HDL cholesterol ester and apo A-I fractional catabolic rate. The apo A-II deficiency trait was bred onto the atherosclerosis-prone apo E-deficient background, which resulted in a surprising 66% decrease in cholesterol levels due primarily to decreased atherogenic lipoprotein remnant particles. Metabolic turnover studies indicated increased remnant clearance in the absence of apo A-II. Finally, apo A-II deficiency was associated with lower free fatty acid, glucose, and insulin levels, suggesting an insulin hypersensitivity state. In summary, apo A-II plays a complex role in lipoprotein metabolism, with some antiatherogenic properties such as the maintenance of a stable HDL pool, and other proatherogenic properties such as decreasing clearance of atherogenic lipoprotein remnants and promotion of insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

gp330/megalin, a member of the low density lipoprotein (LDL) receptor gene family, is expressed on the apical surfaces of epithelial tissues, including the neuroepithelium, where it mediates the endocytic uptake of diverse macromolecules, such as cholesterol-carrying lipoproteins, proteases, and antiproteinases. Megalin knockout mice manifest abnormalities in epithelial tissues including lung and kidney that normally express the protein and they die perinatally from respiratory insufficiency. In brain, impaired proliferation of neuroepithelium produces a holoprosencephalic syndrome, characterized by lack of olfactory bulbs, forebrain fusion, and a common ventricular system. Similar syndromes in humans and animals are caused by insufficient supply of cholesterol during development. Because megalin can bind lipoproteins, we propose that the receptor is part of the maternal-fetal lipoprotein transport system and mediates the endocytic uptake of essential nutrients in the postgastrulation stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNA editing in the nucleus of higher eukaryotes results in subtle changes to the RNA sequence, with the ability to effect dramatic changes in biological function. The first example to be described and among the best characterized, is the cytidine-to-uridine editing of apolipoprotein B (apo-B) RNA. The editing of apo-B RNA is mediated by a novel cytidine deaminase, apobec-1, which has acquired the ability to bind RNA. The stop translation codon generated by the editing of apo-B RNA truncates the full-length apo-B100 to form apo-B48. The recent observations of tumor formation in Apobec-1 transgenic animals, together with the fact that Apobec-1 is expressed in numerous tissues lacking apo-B, raises the issue of whether this enzyme is essential for a variety of posttranscriptional editing events. To directly test this, mice were created with a null mutation in Apobec-1 using homologous recombination in embryonic stem cells. Mice, homozygous for this mutation, were viable and made apo-B100 but not apo-B48. The null animals were fertile, and a variety of histological, behavioral, and morphological analyses revealed no phenotype other than abnormalities in lipoprotein metabolism, which included an increased low density lipoprotein fraction and a reduction in high density lipoprotein cholesterol. These studies demonstrate that neither apobec-1 nor apo-B48 is essential for viability and suggest that the major role of apobec-1 may be confined to the modulation of lipid transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apolipoprotein (apo)-B is found in two forms in mammals: apo-B100, which is made in the liver and the yolk sac, and apo-B48, a truncated protein made in the intestine. To provide models for understanding the physiologic purpose for the two forms of apo-B, we used targeted mutagenesis of the apo-B gene to generate mice that synthesize exclusively apo-B48 (apo-B48-only mice) and mice that synthesize exclusively apo-B100 (apo-B100-only mice). Both the apo-B48-only mice and apo-B100-only mice developed normally, were healthy, and were fertile. Thus, apo-B48 synthesis was sufficient for normal embryonic development, and the synthesis of apo-B100 in the intestines of adult mice caused no readily apparent adverse effects on intestinal function or nutrition. Compared with wild-type mice fed a chow diet, the levels of low density lipoprotein (LDL)-cholesterol and very low density lipoprotein- and LDL-triacylglycerols were lower in apo-B48-only mice and higher in the apo-B100-only mice. In the setting of apo-E-deficiency, the apo-B100-only mutation lowered cholesterol levels, consistent with the fact that apo-B100-lipoproteins can be cleared from the plasma via the LDL receptor, whereas apo-B48-lipoproteins lacking apo-E cannot. The apo-B48-only and apo-B100-only mice should prove to be valuable models for experiments designed to understand the purpose for the two forms of apo-B in mammalian metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myofibroblasts, defined by their expression of smooth muscle alpha-actin, appear at corneal and dermal incisions and promote wound contraction. We report here that cultured fibroblasts differentiate into myofibroblasts by a cell density-dependent mechanism. Fibroblasts seeded at low density (5 cells per mm2) produced a cell culture population consisting of 70-80% myofibroblasts, 5-7 days after seeding. In contrast, fibroblasts seeded at high density (500 cells per mm2) produced cultures with only 5-10% myofibroblasts. When the myofibroblast-enriched cultures were subsequently passaged at high density, the smooth muscle alpha-actin phenotype was lost within 3 days. Furthermore, initially 60% of the low density-cultured cells incorporated BrdUrd compared to 30% of cells passaged at high density. Media from myofibroblast-enriched cultures had more latent and active transforming growth factor beta (TGF-beta) than did media from fibroblast-enriched cultures. Although there was a trend towards increased numbers of myofibroblasts after addition of exogenous TGF-beta, the results did not reach statistical significance. We conclude that myofibroblast differentiation can be induced in fibroblasts by plating at low density. We propose a cell density-dependent model of myofibroblast differentiation during wounding and healing in which at least two factors interact: loss of cell contact and the presence of TGF-beta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increases in plasma cholesterol are associated with progressive increases in the risk of atherosclerotic cardiovascular disease. In humans plasma cholesterol is contained primarily in apolipoprotein B-based low density lipoprotein (LDL). Cells stop making the high-affinity receptor responsible for LDL removal as they become cholesterol replete; this slows removal of LDL from plasma and elevates plasma LDL. As a result of this delayed uptake, hypercholesterolemic individuals not only have more LDL but have significantly older LDL. Oxidative modification of LDL enhances their atherogenicity. This study sought to determine whether increased time spent in circulation, or aging, by lipoprotein particles altered their susceptibility to oxidative modification. Controlled synchronous production of distinctive apolipoprotein B lipoproteins (yolk-specific very low density lipoproteins; VLDLy) with a single estrogen injection into young turkeys was used to model LDL aging in vivo. VLDLy remained in circulation for at least 10 days. Susceptibility to oxidation in vitro was highly dependent on lipoprotein age in vivo. Oxidation, measured as hexanal release from n-6 fatty acids in VLDLy, increased from 13.3 +/- 5.5 nmol of 2-day-old VLDLy per ml, to 108 +/- 17 nmol of 7-day-old VLDLy per ml. Oxidative instability was not due to tocopherol depletion or conversion to a more unsaturated fatty acid composition. These findings establish mathematically describable linkages between the variables of LDL concentration and LDL oxidation. The proposed mathematical models suggest a unified investigative approach to determine the mechanisms for acceleration of atherosclerotic cardiovascular disease risk as plasma cholesterol rises.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Circulating autoantibodies to phospholipids (aPLs), such as cardiolipin (CL), are found in patients with antiphospholipid antibody syndrome (APS). We recently demonstrated that many aPLs bound to CL only after it had been oxidized (OxCL), but not to a reduced CL analogue that could not undergo oxidation. We now show that the neoepitopes recognized by some aPLs consist of adducts formed between breakdown products of oxidized phospholipid and associated proteins, such as β2 glycoprotein 1 (β2GP1). Addition of human β2GP1, polylysine, native low-density lipoprotein, or apolipoprotein AI to OxCL-coated wells increased the anticardiolipin antibody (aCL) binding from APS sera that first had been diluted so that no aCL binding to OxCL could be detected. No increase in aCL binding was observed when these proteins were added to wells coated with reduced CL. The ability of β2GP1, polylysine, or low-density lipoprotein to be a “cofactor” for aCL binding to OxCL was greatly reduced when the proteins were methylated. Incubation of β2GP1 with oxidized 1-palmitoyl-2-linoleyl-[1-14C]-phosphatidylcholine (PC), but not with dipalmitoyl-[1-14C]-PC, led to formation of covalent adducts with β2GP1 recognized by APS sera. These data suggest that the reactive groups of OxCL, such as aldehydes generated during the decomposition of oxidized polyunsaturated fatty acids, form covalent adducts with β2GP1 (and other proteins) and that these are epitopes for aCLs. Knowledge that the epitopes recognized by many aPLs are adducts of oxidized phospholipid and associated proteins, including β2GP1, may give new insights into the pathogenic events underlying the clinical manifestations of APS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free transition metal ions oxidize lipids and lipoproteins in vitro; however, recent evidence suggests that free metal ion-independent mechanisms are more likely in vivo. We have shown previously that human ceruloplasmin (Cp), a serum protein containing seven Cu atoms, induces low density lipoprotein oxidation in vitro and that the activity depends on the presence of a single, chelatable Cu atom. We here use biochemical and molecular approaches to determine the site responsible for Cp prooxidant activity. Experiments with the His-specific reagent diethylpyrocarbonate (DEPC) showed that one or more His residues was specifically required. Quantitative [14C]DEPC binding studies indicated the importance of a single His residue because only one was exposed upon removal of the prooxidant Cu. Plasmin digestion of [14C]DEPC-treated Cp (and N-terminal sequence analysis of the fragments) showed that the critical His was in a 17-kDa region containing four His residues in the second major sequence homology domain of Cp. A full length human Cp cDNA was modified by site-directed mutagenesis to give His-to-Ala substitutions at each of the four positions and was transfected into COS-7 cells, and low density lipoprotein oxidation was measured. The prooxidant site was localized to a region containing His426 because CpH426A almost completely lacked prooxidant activity whereas the other mutants expressed normal activity. These observations support the hypothesis that Cu bound at specific sites on protein surfaces can cause oxidative damage to macromolecules in their environment. Cp may serve as a model protein for understanding mechanisms of oxidant damage by copper-containing (or -binding) proteins such as Cu, Zn superoxide dismutase, and amyloid precursor protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Niemann–Pick disease type C (NP-C) is an autosomal recessive lipidosis linked to chromosome 18q11–12, characterized by lysosomal accumulation of unesterified cholesterol and delayed induction of cholesterol-mediated homeostatic responses. This cellular phenotype is identifiable cytologically by filipin staining and biochemically by measurement of low-density lipoprotein-derived cholesterol esterification. The mutant Chinese hamster ovary cell line (CT60), which displays the NP-C cellular phenotype, was used as the recipient for a complementation assay after somatic cell fusions with normal and NP-C murine cells suggested that this Chinese hamster ovary cell line carries an alteration(s) in the hamster homolog(s) of NP-C. To narrow rapidly the candidate interval for NP-C, three overlapping yeast artificial chromosomes (YACs) spanning the 1 centimorgan human NP-C interval were introduced stably into CT60 cells and analyzed for correction of the cellular phenotype. Only YAC 911D5 complemented the NP-C phenotype, as evidenced by cytological and biochemical analyses, whereas no complementation was obtained from the other two YACs within the interval or from a YAC derived from chromosome 7. Fluorescent in situ hybridization indicated that YAC 911D5 was integrated at a single site per CT60 genome. These data substantially narrow the NP-C critical interval and should greatly simplify the identification of the gene responsible in mouse and man. This is the first demonstration of YAC complementation as a valuable adjunct strategy for positional cloning of a human gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitamin E (α-tocopherol) is a fat-soluble antioxidant that is transported by plasma lipoproteins in the body. α-Tocopherol taken up by the liver with lipoprotein is thought to be resecreted into the plasma in very low density lipoprotein (VLDL). α-Tocopherol transfer protein (αTTP), which was recently identified as a product of the causative gene for familial isolated vitamin E deficiency, is a cytosolic liver protein and plays an important role in the efficient recycling of plasma vitamin E. To throw light on the mechanism of αTTP-mediated α-tocopherol transfer in the liver cell, we devised an assay system using the hepatoma cell line McARH7777. Using this system, we found that the secretion of α-tocopherol was more efficient in cells expressing αTTP than in matched cells lacking αTTP. Brefeldin A, which effectively inhibits VLDL secretion by disrupting the Golgi apparatus, had no effect on α-tocopherol secretion, indicating that αTTP-mediated α-tocopherol secretion is not coupled to VLDL secretion. Among other agents tested, only 25-hydroxycholesterol, a modulator of cholesterol metabolism, inhibited α-tocopherol secretion. This inhibition is most likely mediated by oxysterol-binding protein. These results suggest that αTTP present in the liver cytosol functions to stimulate secretion of cellular α-tocopherol into the extracellular medium and that the reaction utilizes a novel non-Golgi-mediated pathway that may be linked to cellular cholesterol metabolism and/or transport.