48 resultados para Loss factor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grafts of favorable axonal growth substrates were combined with transient nerve growth factor (NGF) infusions to promote morphological and functional recovery in the adult rat brain after lesions of the septohippocampal projection. Long-term septal cholinergic neuronal rescue and partial hippocampal reinnervation were achieved, resulting in partial functional recovery on a simple task assessing habituation but not on a more complex task assessing spatial reference memory. Control animals that received transient NGF infusions without axonal-growth-promoting grafts lacked behavioral recovery but also showed long-term septal neuronal rescue. These findings indicate that (i) partial recovery from central nervous system injury can be induced by both preventing host neuronal loss and promoting host axonal regrowth and (ii) long-term neuronal loss can be prevented with transient NGF infusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In aerobic organisms, protection against oxidative damage involves the combined action of highly specialized antioxidant enzymes, such as superoxide dismutase (SOD) and catalase. Here we describe the isolation and characterization of another gene in the yeast Saccharomyces cerevisiae that plays a critical role in detoxification of reactive oxygen species. This gene, named ATX1, was originally isolated by its ability to suppress oxygen toxicity in yeast lacking SOD. ATX1 encodes a 8.2-kDa polypeptide exhibiting significant similarity and identity to various bacterial metal transporters. Potential ATX1 homologues were also identified in multicellular eukaryotes, including the plants Arabidopsis thaliana and Oryza sativa and the nematode Caenorhabditis elegans. In yeast cells, ATX1 evidently acts in the transport and/or partitioning of copper, and this role in copper homeostasis appears to be directly relevant to the ATX1 suppression of oxygen toxicity: ATX1 was incapable of compensating for SOD when cells were depleted of exogenous copper. Strains containing a deletion in the chromosomal ATX1 locus were generated. Loss of ATX1 function rendered both mutant and wild-type SOD strains hypersensitive toward paraquat (a generator of superoxide anion) and was also associated with an increased sensitivity toward hydrogen peroxide. Hence, ATX1 protects cells against the toxicity of both superoxide anion and hydrogen peroxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signals transduced by the met tyrosine kinase, which is the receptor for scatter factor/hepatocyte growth factor, are of major importance for the regulation of epithelial cell motility, morphogenesis, and proliferation. We report here that different sets of tyrosine residues in the cytoplasmic domain of the met receptor affect signal transduction in epithelial cells in a positive or negative fashion: mutation of the C-terminal tyrosine residues 13-16 (Y1311, Y1347, Y1354, and Y1363) reduced or abolished ligand-induced cell motility and branching morphogenesis. In contrast, mutation of the juxtamembrane tyrosine residue 2 (Y1001) produced constitutively mobile, fibroblastoid cells. Furthermore, the gain-of-function mutation of tyrosine residue 2 suppressed the loss-of-function mutations of tyrosine residue 15 or 16. The opposite roles of the juxtamembrane and C-terminal tyrosine residues may explain the suggested dual function of the met receptor in both epithelial-mesenchymal interactions and tumor progression.