47 resultados para INSULIN AUTOANTIBODIES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anticardiolipin (aCL) autoantibodies are associated with thrombosis, recurrent fetal loss, and thrombocytopenia. Only aCL found in autoimmune disease require the participation of the phospholipid binding plasma protein β2 glycoprotein I (β2GPI) for antibody binding and now are called anti-β2GPI. The antigenic specificity of aCL affinity purified from 11 patients with high titers was evaluated in an effort to better understand the pathophysiology associated with aCL. Seven different recombinant domain-deleted mutants of human β2GPI, and full length human β2GPI (wild-type), were used in competition assays to inhibit the autoantibodies from binding to immobilized wild-type β2GPI. Only those domain-deleted mutants that contained domain 1 inhibited the binding to immobilized wild-type β2GPI from all of the patients. The domain-deleted mutants that contained domain 1 inhibited all aCL in a similar but not identical pattern, suggesting that these aCL recognize a similar, but distinguishable, epitope(s) present on domain 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the aging process, mammals lose up to a third of their skeletal muscle mass and strength. Although the mechanisms underlying this loss are not entirely understood, we attempted to moderate the loss by increasing the regenerative capacity of muscle. This involved the injection of a recombinant adeno-associated virus directing overexpression of insulin-like growth factor I (IGF-I) in differentiated muscle fibers. We demonstrate that the IGF-I expression promotes an average increase of 15% in muscle mass and a 14% increase in strength in young adult mice, and remarkably, prevents aging-related muscle changes in old adult mice, resulting in a 27% increase in strength as compared with uninjected old muscles. Muscle mass and fiber type distributions were maintained at levels similar to those in young adults. We propose that these effects are primarily due to stimulation of muscle regeneration via the activation of satellite cells by IGF-I. This supports the hypothesis that the primary cause of aging-related impairment of muscle function is a cumulative failure to repair damage sustained during muscle utilization. Our results suggest that gene transfer of IGF-I into muscle could form the basis of a human gene therapy for preventing the loss of muscle function associated with aging and may be of benefit in diseases where the rate of damage to skeletal muscle is accelerated.