57 resultados para Human Element
Resumo:
The human immunodeficiency virus type 1 transactivator protein, Tat, stimulates transcriptional elongation from the viral long terminal repeat. To test whether Tat associates directly with activated transcription complexes, we have used the lac repressor protein (LacR) to "trap" elongating RNA polymerases. The arrested transcription complexes were purified by binding biotinylated templates to streptaviridin-coated magnetic beads. Transcription complexes were released from the magnetic beads following cleavage of the templates with restriction enzymes and were immunoblotted with antibodies to Tat, LacR and RNA polymerase II. The Tat protein copurified with RNA polymerase bound to wild-type templates but did not copurify with transcription complexes prepared by using templates carrying mutations in the transactivation response element (TAR) RNA. We conclude that Tat and cellular cofactors become attached to the transcription complex during its transit through TAR.
Human immunodeficiency virus type 1 and 2 Tat proteins specifically interact with RNA polymerase II.
Resumo:
The Tat-responsive region (TAR) element is a critical RNA regulatory element in the human immunodeficiency virus (HIV) long terminal repeat, which is required for activation of gene expression by the transactivator protein Tat. Recently, we demonstrated by gel-retardation analysis that RNA polymerase II binds to TAR RNA and that Tat prevents this binding even when Tat does not bind to TAR RNA. These results suggested that direct interactions between Tat and RNA polymerase II may prevent RNA polymerase II pausing and lead to Tat-mediated increases in transcriptional elongation. To test this possibility, we performed protein interaction studies with RNA polymerase II and both the HIV-1 and the closely related HIV-2 Tat protein. These studies indicated that both the HIV-1 and HIV-2 Tat proteins could specifically interact with RNA polymerase II. Mutagenesis of both HIV-1 and HIV-2 Tat demonstrated that the basic domains of both the HIV-1 and HIV-2 Tat proteins were required for this interaction. Furthermore, "far Western" analysis suggested that the largest subunit of RNA polymerase II was the site for interaction with Tat. The interactions between Tat and RNA polymerase II were of similar magnitude to those detected between RNA polymerase II and the cellular transcription factor RAP30, which stably associates with RNA polymerase II during transcriptional elongation. These studies are consistent with the model that RNA polymerase II is a cellular target for Tat resulting in Tat-mediated increases in transcriptional elongation from the HIV long terminal repeat.
Resumo:
We have studied the effects of retinoic acid (RA) and thyroid hormone (3,3',5-triiodothyronine; T3) on platelet-activating factor receptor (PAFR) gene expression in intact rats and the ability of two human PAFR gene promoters (PAFR promoters 1 and 2) to generate two transcripts (PAFR transcripts 1 and 2). Northern blotting showed that RA and T3 regulated PAFR gene expression only in rat tissues that express PAFR transcript 2. Functional analysis of the human PAFR promoter 2 revealed that responsiveness to RA and T3 was conferred through a 24-bp element [PAFR-hormone response element (HRE) located from -67 to -44 bp of the transcription start site, whereas PAFR promoter 1 did not respond to these hormones. The PAFR-HRE is composed of three direct repeated TGACCT-like hexamer motifs with 2-and 4-bp spaces, and the two upstream and two downstream motifs were identified as response elements for RA and T3. Thus, the PAF-PAFR pathway is regulated by the PAFR level altered by a tissue-specific response to RA and T3 through the PAFR-HRE of the PAFR promoter 2.
Resumo:
ICSBP is a member of the interferon (IFN) regulatory factor (IRF) family that regulates expression of type I interferon (IFN) and IFN-regulated genes. To study the role of the IRF family in viral infection, a cDNA for the DNA-binding domain (DBD) of ICSBP was stably transfected into U937 human monocytic cells. Clones that expressed DBD exhibited a dominant negative phenotype and did not elicit antiviral activity against vesicular stomatitis virus (VSV) infection upon IFN treatment. Most notably, cells expressing DBD were refractory to infection by vaccinia virus (VV) and human immunodeficiency virus type 1 (HIV-1). The inhibition of VV infection was attributed to defective virion assembly, and that of HIV-1 to low CD4 expression and inhibition of viral transcription in DBD clones. HIV-1 and VV were found to have sequences in their regulatory regions similar to the IFN-stimulated response element (ISRE) to which IRF family proteins bind. Accordingly, these viral sequences and a cellular ISRE bound a shared factor(s) expressed in U937 cells. These observations suggest a novel host-virus relationship in which the productive infection of some viruses is regulated by the IRF-dependent transcription pathway through the ISRE.
Resumo:
Promoter and silencer elements of the immediate 5' flanking region of the gene coding for human factor VII were identified and characterized. The major transcription start site, designated as +1, was determined by RACE (rapid amplification of cDNA ends) analysis of human liver cDNA and was found to be located 50 bp upstream from the translation start site. Two minor transcription start sites were found at bp +32 bp and +37. Progressive deletions of the 5' flanking region were fused to the chloramphenicol acetyltransferase reporter gene and transient expression in HepG2 and HeLa cells was measured. Two promoter elements that were essential for hepatocyte-specific transcription were identified. The first site, FVIIP1, located at bp -19 to +1, functioned independently of orientation or position and contributed about one-third of the promoter activity of the factor VII gene. Electrophoretic mobility-shift, competition, and anti-hepatocyte nuclear factor 4 (HNF4) antibody supershift experiments demonstrated that this site contained an HNF-4 binding element homologous to the promoters in the genes coding for factor IX and factor X. The second site, FVIIP2, located at bp -50 to -26, also functioned independent of orientation or position and contributed about two thirds of the promoter activity in the gene for factor VII. Functional assays with mutant sequences demonstrated that a 10-bp G + C-rich core sequence which shares 90% sequence identity with the prothrombin gene enhancer was essential for the function of the second site. Mobility-shift and competition assays suggested that this site also binds hepatic-specific factors as well as the transcription factor Sp1. Two silencer elements located upstream of the promoter region spanning bp -130 to -103 (FVIIS1 site) and bp -202 to -130 (FVIIS2) were also identified by reporter gene assays.
Resumo:
A family of interferon (IFN) regulatory factors (IRFs) have been shown to play a role in transcription of IFN genes as well as IFN-stimulated genes. We report the identification of a member of the IRF family which we have named IRF-3. The IRF-3 gene is present in a single copy in human genomic DNA. It is expressed constitutively in a variety of tissues and no increase in the relative steady-state levels of IRF-3 mRNA was observed in virus-infected or IFN-treated cells. The IRF-3 gene encodes a 50-kDa protein that binds specifically to the IFN-stimulated response element (ISRE) but not to the IRF-1 binding site PRD-I. Overexpression of IRF-3 stimulates expression of the IFN-stimulated gene 15 (ISG15) promoter, an ISRE-containing promoter. The murine IFNA4 promoter, which can be induced by IRF-1 or viral infection, is not induced by IRF-3. Expression of IRF-3 as a Gal4 fusion protein does not activate expression of a chloramphenicol acetyltransferase reporter gene containing repeats of the Gal4 binding sites, indicating that this protein does not contain the transcription transactivation domain. The high amino acid homology between IRF-3 and ISG factor 3 gamma polypeptide (ISGF3 gamma) and their similar binding properties indicate that, like ISGF3 gamma, IRF-3 may activate transcription by complex formation with other transcriptional factors, possibly members of the Stat family. Identification of this ISRE-binding protein may help us to understand the specificity in the various Stat pathways.
Resumo:
The regulation of human immunodeficiency virus type 1 (HIV-1) gene expression in response to Tat is dependent on an element downstream of the HIV-1 transcriptional initiation site designated the trans-activating region (TAR). TAR forms a stable stem-loop RNA structure in which a 3-nt bulge structure and a 6-nt loop structure are important for Tat activation. In the absence of Tat, the HIV-1 promoter generates so-called short or nonprocessive transcripts terminating at +60, while in the presence of Tat the synthesis of these short transcripts is markedly decreased and transcripts that extend through the 9.0-kb HIV-1 genome are synthesized. Tat effects on transcriptional elongation are likely due to alterations in the elongation properties of RNA polymerase II. In this study we demonstrated that a set of cellular cofactors that modulate the binding of the cellular protein TRP-185 to the TAR RNA loop sequences also functioned to markedly stimulate the specific binding of hypophosphorylated (IIa) and hyperphosphorylated (IIo) RNA polymerase II to TAR RNA. The concentrations of RNA polymerase II required for this interaction with TAR RNA were similar to those required to initiate in vitro transcription from the HIV-1 long terminal repeat. RNA gel retardation analysis with wild-type and mutant TAR RNAs indicated that the TAR RNA loop and bulge sequences were critical for the binding of RNA polymerase II. The addition of wild-type but not mutant Tat protein to gel retardation analysis with TAR RNA and RNA polymerase II resulted in the loss of binding of RNA polymerase II binding to TAR RNA. These results suggest that Tat may function to alter RNA polymerase II, which is paused due to its binding to HIV-1 TAR RNA with resultant stimulation of its transcriptional elongation properties.
Resumo:
We have previously identified tyrosine-537 as a constitutively phosphorylated site on the human estrogen receptor (hER). A 12-amino acid phosphotyrosyl peptide containing a selected sequence surrounding tyrosine-537 was used to investigate the function of phosphotyrosine-537. The phosphotyrosyl peptide completely blocked the binding of the hER to an estrogen response element (ERE) in a gel mobility shift assay. Neither the nonphosphorylated tyrosyl peptide nor an unrelated phosphotyrosyl peptide previously shown to inhibit the signal transducers and activators of transcription factor (STAT) blocked binding of the hER to the ERE. The hER phosphotyrosyl peptide was shown by molecular sizing chromatography to dissociate the hER dimer into monomers. The hER specifically bound the 32P-labeled phosphotyrosyl peptide, indicating that the inhibition of ERE binding was caused by the phosphotyrosyl peptide binding directly to the hER and blocking dimerization. These data suggest that the phosphorylation of tyrosine-537 is a necessary step for the formation of the hER dimer. In addition, we propose that the dimerization of the hER occurs by a previously unrecognized Src homology 2 domain (SH2)-like phosphotyrosyl coupling mechanism. Consequently, the phosphotyrosyl peptide represents a class of antagonists that inhibits estrogen action by a mechanism other than interacting with the receptor's hormone binding site.
Resumo:
The developmental stage- and erythroid lineage-specific activation of the human embryonic zeta- and fetal/adult alpha-globin genes is controlled by an upstream regulatory element [hypersensitive site (HS)-40] with locus control region properties, a process mediated by multiple nuclear factor-DNA complexes. In vitro DNase I protection experiments of the two G+C-rich, adult alpha-globin promoters have revealed a number of binding sites for nuclear factors that are common to HeLa and K-562 extracts. However, genomic footprinting analysis has demonstrated that only a subset of these sites, clustered between -130 and +1, is occupied in an erythroid tissue-specific manner. The function of these in vivo-occupied motifs of the alpha-globin promoters, as well as those previously mapped in the HS-40 region, is assayed by site-directed mutagenesis and transient expression in embryonic/fetal erythroid K-562 cells. These studies, together with our expression data on the human embryonic zeta-globin promoter, provide a comprehensive view of the functional roles of individual nuclear factor-DNA complexes in the final stages of transcriptional activation of the human alpha-like globin promoters by the HS-40 element.
Resumo:
The neural basis for perceptual grouping operations in the human visual system, including the processes which generate illusory contours, is fundamental to understanding human vision. We have employed functional magnetic resonance imaging to investigate these processes noninvasively. Images were acquired on a GE Signa 1.5T scanner equipped for echo planar imaging with an in-plane resolution of 1.5 x 1.5 mm and slice thicknesses of 3.0 or 5.0 mm. Visual stimuli included nonaligned inducers (pacmen) that created no perceptual contours, similar inducers at the corners of a Kanizsa square that created illusory contours, and a real square formed by continuous contours. Multiple contiguous axial slices were acquired during baseline, visual stimulation, and poststimulation periods. Activated regions were identified by a multistage statistical analysis of the activation for each volume element sampled and were compared across conditions. Specific brain regions were activated in extrastriate cortex when the illusory contours were perceived but not during conditions when the illusory contours were absent. These unique regions were found primarily in the right hemisphere for all four subjects and demonstrate that specific brain regions are activated during the kind of perceptual grouping operations involved in illusory contour perception.
Resumo:
Poly(ADP-ribose) polymerase [PARP; NAD+ ADP-ribosyltransferase; NAD+:poly(adenosine-diphosphate-D-ribosyl)-acceptor ADP-D-ribosyltransferase, EC 2.4.2.30] is a zinc-dependent eukaryotic DNA-binding protein that specifically recognizes DNA strand breaks produced by various genotoxic agents. To study the biological function of this enzyme, we have established stable HeLa cell lines that constitutively produce the 46-kDa DNA-binding domain of human PARP (PARP-DBD), leading to the trans-dominant inhibition of resident PARP activity. As a control, a cell line was constructed, producing a point-mutated version of the DBD, which has no affinity for DNA in vitro. Expression of the PARP-DBD had only a slight effect on undamaged cells but had drastic consequences for cells treated with genotoxic agents. Exposure of cell lines expressing the wild-type (wt) or the mutated PARP-DBD, with low doses of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) resulted in an increase in their doubling time, a G2 + M accumulation, and a marked reduction in cell survival. However, UVC irradiation had no preferential effect on the cell growth or viability of cell lines expressing the PARP-DBD. These PARP-DBD-expressing cells treated with MNNG presented the characteristic nucleosomal DNA ladder, one of the hallmarks of cell death by apoptosis. Moreover, these cells exhibited chromosomal instability as demonstrated by higher frequencies of both spontaneous and MNNG-induced sister chromatid exchanges. Surprisingly, the line producing the mutated DBD had the same behavior as those producing the wt DBD, indicating that the mechanism of action of the dominant-negative mutant involves more than its DNA-binding function. Altogether, these results strongly suggest that PARP is an element of the G2 checkpoint in mammalian cells.
Resumo:
The p53 protein activates transcription of a target gene by binding to a specific DNA response element and interacting with the transcriptional apparatus of RNA polymerase II. The amino-terminal domain of p53 interacts with a component of the TFIID basal transcription complex. The human TATA-binding-protein-associated factor TAFII31, a component of TFIID, has been identified as a critical protein required for p53-mediated transcriptional activation. TAFII31 and p53 proteins bind to each other via amino acid residues in the amino-terminal domain of p53 that are essential for transcription. Antibodies directed against TAFII31 protein inhibit p53-activated but not basal transcription in vitro. These results demonstrate that TAFII31 is a coactivator for the p53 protein.