68 resultados para Herpes simplex 2
Resumo:
Herpesviruses have been previously correlated to vascular disease and shown to cause thrombogenic and atherogenic changes to host cells. Herein we show that even in the absence of cells, purified cytomegalovirus (CMV) and herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) can initiate thrombin production. Functional assays demonstrated that purified HSV-1 and HSV-2 provide the necessary phospholipid (proPL) for assembling the coagulation factors Xa and Va into prothrombinase, which is responsible for generating thrombin. These observations are consistent with our earlier studies involving CMV. The presence of proPL on all three herpesviruses was confirmed directly by flow cytometry and electron microscopy by using annexin V and factor Va, respectively, as proPL-specific probes. Of equal importance, we found that CMV, HSV-1, and HSV-2 were also able to facilitate factor Xa generation from the inactive precursor factor X, but only when factor VII/VIIa and Ca2+ were present. Monoclonal antibodies specific for tissue factor (TF), the coagulation initiator, inhibited this factor X activation and, furthermore, enabled identification of TF antigen on each virus type by flow cytometry and electron microscopy. Collectively, these data show that CMV, HSV-1, and HSV-2 can initiate the generation of thrombin by having essential proPL and TF activities on their surface. Unlike the normal cellular source, the viral activity is constitutive and, therefore, not restricted to sites of vascular injury. Thus cell-independent thrombin production may be the earliest event in vascular pathology mediated by herpesviruses.
Resumo:
The transporter associated with antigen processing (TAP) is essential for intracellular transport of protein fragments into the endoplasmic reticulum for loading of major histocompatibility complex (MHC) class I molecules. On the cell surface, these peptide–MHC complexes are monitored by cytotoxic T lymphocytes. To study the ATP hydrolysis of TAP, we developed an enrichment and reconstitution procedure, by which we fully restored TAP function in proteoliposomes. A TAP-specific ATPase activity was identified that could be stimulated by peptides and blocked by the herpes simplex virus protein ICP47. Strikingly, the peptide-binding motif of TAP directly correlates with the stimulation of the ATPase activity, demonstrating that the initial peptide-binding step is responsible for TAP selectivity. ATP hydrolysis follows Michaelis–Menten kinetics with a maximal velocity Vmax of 2 μmol/min per mg TAP, corresponding to a turnover number of approximately 5 ATP per second. This turnover rate is sufficient to account for the role of TAP in peptide loading of MHC molecules and the overall process of antigen presentation. Interestingly, sterically restricted peptides that bind but are not transported by TAP do not stimulate ATPase activity. These results point to coordinated dialogue between the peptide-binding site, the nucleotide-binding domain, and the translocation site via conformational changes within the TAP complex.
Resumo:
Recombinant adenoviral mediated delivery of suicide and cytokine genes has been investigated as a treatment for hepatic metastases of colon carcinoma in mice. Liver tumors were established by intrahepatic implantation of a poorly immunogenic colon carcinoma cell line (MCA-26), which is syngeneic in BALB/c mice. Intratumoral transfer of the herpes simplex virus type 1 thymidine kinase (HSV-tk) and the murine interleukin (mIL)-2 genes resulted in substantial hepatic tumor regression, induced an effective systemic antitumoral immunity in the host and prolonged the median survival time of the treated animals from 22 to 35 days. The antitumoral immunity declined gradually, which led to tumor recurrence over time. A recombinant adenovirus expressing the mIL-12 gene was constructed and tested in the MCA-26 tumor model. Intratumoral administration of this cytokine vector alone increased significantly survival time of the animals with 25% of the treated animals still living over 70 days. These data indicate that local expression of IL-12 may also be an attractive treatment strategy for metastatic colon carcinoma.
Resumo:
A human cDNA sequence homologous to human deoxycytidine kinase (dCK; EC 2.7.1.74) was identified in the GenBank sequence data base. The longest open reading frame encoded a protein that was 48% identical to dCK at the amino acid level. The cDNA was expressed in Escherichia coli and shown to encode a protein with the same substrate specificity as described for the mitochondrial deoxyguanosine kinase (dGK; EC 2.7.1.113). The N terminus of the deduced amino acid sequence had properties characteristic for a mitochondrial translocation signal, and cleavage at a putative mitochondrial peptidase cleavage site would give a mature protein size of 28 kDa. Northern blot analysis determined the length of dGK mRNA to 1.3 kbp with no cross-hybridization to the 2.8-kbp dCK mRNA. dGK mRNA was detected in all tissues investigated with the highest expression levels in muscle, brain, liver, and lymphoid tissues. Alignment of the dGK and herpes simplex virus type 1 thymidine kinase amino acid sequences showed that five regions, including the substrate-binding pocket and the ATP-binding glycine loop, were also conserved in dGK. To our knowledge, this is the first report of a cloned mitochondrial nucleoside kinase and the first demonstration of a general sequence homology between two mammalian deoxyribonucleoside kinases. Our findings suggest that dCK and dGK are evolutionarily related, as well as related to the family of herpes virus thymidine kinases.
Resumo:
The homeodomain is a 60-amino acid module which mediates critical protein-DNA and protein-protein interactions for a large family of regulatory proteins. We have used structure-based design to analyze the ability of the Oct-1 homeodomain to nucleate an enhancer complex. The Oct-1 protein regulates herpes simplex virus (HSV) gene expression by participating in the formation of a multiprotein complex (C1 complex) which regulates alpha (immediate early) genes. We recently described the design of ZFHD1, a chimeric transcription factor containing zinc fingers 1 and 2 of Zif268, a four-residue linker, and the Oct-1 homeodomain. In the presence of alpha-transinduction factor and C1 factor, ZFHD1 efficiently nucleates formation of the C1 complex in vitro and specifically activates gene expression in vivo. The sequence specificity of ZFHD1 recruits C1 complex formation to an enhancer element which is not efficiently recognized by Oct-1. ZFHD1 function depends on the recognition of the Oct-1 homeodomain surface. These results prove that the Oct-1 homeodomain mediates all the protein-protein interactions that are required to efficiently recruit alpha-transinduction factor and C1 factor into a C1 complex. The structure-based design of transcription factors should provide valuable tools for dissecting the interactions of DNA-bound domains in other regulatory circuits.
Resumo:
The efficacy of combination therapy with a "suicide gene" and a cytokine gene to treat metastatic colon carcinoma in the liver was investigated. Tumor in the liver was generated by intrahepatic injection of a colon carcinoma cell line (MCA-26) in syngeneic BALB/c mice. Recombinant adenoviral vectors containing various control and therapeutic genes were injected directly into the solid tumors, followed by treatment with ganciclovir. While the tumors continued to grow in all animals treated with a control vector or a mouse interleukin 2 vector, those treated with a herpes simplex virus thymidine kinase vector, with or without the coadministration of the mouse interleukin 2 vector, exhibited dramatic necrosis and regression. However, only animals treated with both vectors developed an effective systemic antitumoral immunity against challenges of tumorigenic doses of parental tumor cells inoculated at distant sites. The antitumoral immunity was associated with the presence of MCA-26 tumor-specific cytolytic CD8+ T lymphocytes. The results suggest that combination suicide and cytokine gene therapy in vivo can be a powerful approach for treatment of metastatic colon carcinoma in the liver.
Resumo:
Varicella-Zoster virus (VZV) is a herpesvirus that becomes latent in sensory neurons after primary infection (chickenpox) and subsequently may reactivate to cause zoster. The mechanism by which this virus maintains latency, and the factors involved, are poorly understood. Here we demonstrate, by immunohistochemical analysis of ganglia obtained at autopsy from seropositive patients without clinical symptoms of VZV infection that viral regulatory proteins are present in latently infected neurons. These proteins, which localize to the nucleus of cells during lytic infection, predominantly are detected in the cytoplasm of latently infected neurons. The restriction of regulatory proteins from the nucleus of latently infected neurons might interrupt the cascade of virus gene expression that leads to a productive infection. Our findings raise the possibility that VZV has developed a novel mechanism for maintenance of latency that contrasts with the transcriptional repression that is associated with latency of herpes simplex virus, the prototypic alpha herpesvirus.
Resumo:
The Oct-1 POU domain binds diverse DNA-sequence elements and forms a higher-order regulatory complex with the herpes simplex virus coregulator VP16. The POU domain contains two separate DNA-binding domains joined by a flexible linker. By protein–DNA photocrosslinking we show that the relative positioning of the two POU DNA-binding domains on DNA varies depending on the nature of the DNA target. On a single VP16-responsive element, the POU domain adopts multiple conformations. To determine the structure of the Oct-1 POU domain in a multiprotein complex with VP16, we allowed VP16 to interact with previously crosslinked POU-domain–DNA complexes and found that VP16 can associate with multiple POU-domain conformations. These results reveal the dynamic potential of a DNA-binding domain in directing transcriptional regulatory complex formation.
Resumo:
The retroviral oncogene qin codes for a protein that belongs to the family of the winged helix transcription factors. The viral Qin protein, v-Qin, differs from its cellular counterpart, c-Qin, by functioning as a stronger transcriptional repressor and a more efficient inducer of tumors. This observation suggests that repression may be important in tumorigenesis. To test this possibility, chimeric proteins were constructed in which the Qin DNA-binding domain was fused to either a strong repressor domain (derived from the Drosophila Engrailed protein) or a strong activator domain (from the herpes simplex virus VP16 protein). The chimeric transcriptional repressor, Qin–Engrailed, transformed chicken embryo fibroblasts in culture and induced sarcomas in young chickens. The chimeric activator, Qin–VP16, failed to transform cells in vitro or in vivo and caused cellular resistance to oncogenic transformation by Qin. These data support the conclusion that the Qin protein induces oncogenic transformation by repressing the transcription of genes which function as negative growth regulators or tumor suppressors.
Resumo:
A strategy employing gene-trap mutagenesis and site-specific recombination (Cre/loxP) has been developed to isolate genes that are transcriptionally activated during programmed cell death. Interleukin-3 (IL-3)-dependent hematopoietic precursor cells (FDCP1) expressing a reporter plasmid that codes for herpes simplex virus–thymidine kinase, neomycin phosphotransferase, and murine IL-3 were transduced with a retroviral gene-trap vector carrying coding sequences for Cre-recombinase (Cre) in the U3 region. Activation of Cre expression from integrations into active genes resulted in a permanent switching between the selectable marker genes that converted the FDCP1 cells to factor independence. Selection for autonomous growth yielded recombinants in which Cre sequences in the U3 region were expressed from upstream cellular promoters. Because the expression of the marker genes is independent of the trapped cellular promoter, genes could be identified that were transiently induced by IL-3 withdrawal.
Resumo:
We are developing quantitative assays to repeatedly and noninvasively image expression of reporter genes in living animals, using positron emission tomography (PET). We synthesized positron-emitting 8-[18F]fluoroganciclovir (FGCV) and demonstrated that this compound is a substrate for the herpes simplex virus 1 thymidine kinase enzyme (HSV1-TK). Using positron-emitting FGCV as a PET reporter probe, we imaged adenovirus-directed hepatic expression of the HSV1-tk reporter gene in living mice. There is a significant positive correlation between the percent injected dose of FGCV retained per gram of liver and the levels of hepatic HSV1-tk reporter gene expression (r2 > 0.80). Over a similar range of HSV1-tk expression in vivo, the percent injected dose retained per gram of liver was 0–23% for ganciclovir and 0–3% for FGCV. Repeated, noninvasive, and quantitative imaging of PET reporter gene expression should be a valuable tool for studies of human gene therapy, of organ/cell transplantation, and of both environmental and behavioral modulation of gene expression in transgenic mice.
Resumo:
Host Cell Factor-1 (HCF-1, C1) was first identified as a cellular target for the herpes simplex virus transcriptional activator VP16. Association between HCF and VP16 leads to the assembly of a multiprotein enhancer complex that stimulates viral immediate-early gene transcription. HCF-1 is expressed in all cells and is required for progression through G1 phase of the cell cycle. In addition to VP16, HCF-1 associates with a cellular bZIP protein known as LZIP (or Luman). Both LZIP and VP16 contain a four-amino acid HCF-binding motif, recognized by the N-terminal β-propeller domain of HCF-1. Herein, we show that the N-terminal 92 amino acids of LZIP contain a potent transcriptional activation domain composed of three elements: the HCF-binding motif and two LxxLL motifs. LxxLL motifs are found in a number of transcriptional coactivators and mediate protein–protein interactions, notably recognition of the nuclear hormone receptors. LZIP is an example of a sequence-specific DNA-binding protein that uses LxxLL motifs within its activation domain to stimulate transcription. The LxxLL motifs are not required for association with the HCF-1 β-propeller and instead interact with other regions in HCF-1 or recruit additional cofactors.
Resumo:
The recent discovery of long term AIDS nonprogressors who harbor nef-attenuated HIV suggests that a naturally occurring live vaccine for AIDS may already exist. Animal models have shown that a live vaccine for AIDS, attenuated in nef, is the best candidate vaccine. There are considerable risks, real and perceived, with the use of live HIV vaccines. We have introduced a conditional lethal genetic element into HIV-1 and simian immunodeficiency virus (SIV) molecular clones deleted in nef. The antiviral strategy we employed targets both virus replication and the survival of the infected cell. The suicide gene, herpes simplex virus thymidine kinase (tk), was expressed and maintained in HIV over long periods of time. Herpes simplex virus tk confers sensitivity to the antiviral activity of acyclic nucleosides such as ganciclovir (GCV). HIV-tk and SIV-tk replication were sensitive to GCV at subtoxic concentrations, and virus-infected cells were eliminated from tumor cell lines as well as primary cell cultures. We found the HIV-tk virus to be remarkably stable even after being cultured in media containing a low concentration of GCV and then challenged with the higher dose and that while GCV resistant escape mutants did arise, a significant fraction of the virus remained sensitive to GCV.
Resumo:
Striated muscle is the predominant site of gene expression after i.m. immunization of plasmid DNA, but it is not clear if myocytes or professional antigen-presenting cells (APCs) of hematopoietic origin present the encoded antigens to class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes (CTL). To address this issue, CTL responses were assessed in mice engrafted with immune systems that were partially MHC matched with antigen-producing muscle cells. Spleen cells (sc) from immunocompetent F1 H-2bxd mice were infused into H-2b or H-2d mice carrying the severe combined immunodeficiency (scid) mutation, creating F1sc-->H-2b and F1sc-->H-2d chimeras, respectively. Immunization with DNA plasmids encoding the herpes simplex virus gB or the human immunodeficiency virus gp120 glycoproteins elicited antiviral CTL activity. F1sc-->H-2d chimeras responded to an H-2d-restricted gp120 epitope but not an H-2b restricted gB epitope, whereas F1sc-->H-2b chimeras responded to the H-2b but not the H-2d restricted epitope. This pattern of epitope recognition by the sc chimeras indicated that APCs of recipient (scid) origin were involved in initiation of CTL responses. Significantly, CTL responses against epitopes presented by the mismatched donor class I molecules were elicited if F1 bone marrow cells and sc were transferred into scid recipients before or several days to weeks after DNA immunization. Thus, bone marrow-derived APCs are sufficient for class I MHC presentation of viral antigens after i.m. immunization with plasmid DNA. Expression of plasmid DNA by these APCs is probably not a requirement for CTL priming. Instead, they appear to present proteins synthesized by other host cells.
Resumo:
The basal ganglia are known to receive inputs from widespread regions of the cerebral cortex, such as the frontal, parietal, and temporal lobes. Of these cortical areas, only the frontal lobe is thought to be the target of basal ganglia output. One of the cortical regions that is a source of input to the basal ganglia is area TE, in inferotemporal cortex. This cortical area is thought to be critically involved in the recognition and discrimination of visual objects. Using retrograde transneuronal transport of herpes simplex virus type 1, we have found that one of the output nuclei of the basal ganglia, the substantia nigra pars reticulata, projects via the thalamus to TE. Thus, TE is not only a source of input to the basal ganglia, but also is a target of basal ganglia output. This result implies that the output of the basal ganglia influences higher order aspects of visual processing. In addition, we propose that dysfunction of the basal ganglia loop with TE leads to alterations in visual perception, including visual hallucinations.