70 resultados para Hematopoietic Progenitor
Resumo:
Fabry disease is a lipid storage disorder resulting from mutations in the gene encoding the enzyme α-galactosidase A (α-gal A; EC 3.2.1.22). We previously have demonstrated long-term α-gal A enzyme correction and lipid reduction mediated by therapeutic ex vivo transduction and transplantation of hematopoietic cells in a mouse model of Fabry disease. We now report marked improvement in the efficiency of this gene-therapy approach. For this study we used a novel bicistronic retroviral vector that engineers expression of both the therapeutic α-gal A gene and the human IL-2Rα chain (huCD25) gene as a selectable marker. Coexpression of huCD25 allowed selective immunoenrichment (preselection) of a variety of transduced human and murine cells, resulting in enhanced intracellular and secreted α-gal A enzyme activities. Of particular significance for clinical applicability, mobilized CD34+ peripheral blood hematopoietic stem/progenitor cells from Fabry patients have low-background huCD25 expression and could be enriched effectively after ex vivo transduction, resulting in increased α-gal A activity. We evaluated effects of preselection in the mouse model of Fabry disease. Preselection of transduced Fabry mouse bone marrow cells elevated the level of multilineage gene-corrected hematopoietic cells in the circulation of transplanted animals and improved in vivo enzymatic activity levels in plasma and organs for more than 6 months after both primary and secondary transplantation. These studies demonstrate the potential of using a huCD25-based preselection strategy to enhance the clinical utility of ex vivo hematopoietic stem/progenitor cell gene therapy of Fabry disease and other disorders.
Resumo:
During mouse embryogenesis, two waves of hematopoietic progenitors originate in the yolk sac. The first wave consists of primitive erythroid progenitors that arise at embryonic day 7.0 (E7.0), whereas the second wave consists of definitive erythroid progenitors that arise at E8.25. To determine whether these unilineage hematopoietic progenitors arise from multipotential precursors, we investigated the kinetics of high proliferative potential colony-forming cells (HPP-CFC), multipotent precursors that give rise to macroscopic colonies when cultured in vitro. No HPP-CFC were found at presomite stages (E6.5–E7.5). Rather, HPP-CFC were detected first at early somite stages (E8.25), exclusively in the yolk sac. HPP-CFC were found subsequently in the bloodstream at higher levels than the remainder of the embryo proper. However, the yolk sac remains the predominant site of HPP-CFC expansion (>100-fold) until the liver begins to serve as the major hematopoietic organ at E11.5. On secondary replating, embryonic HPP-CFC give rise to definitive erythroid and macrophage (but not primitive erythroid) progenitors. Our findings support the hypothesis that definitive but not primitive hematopoietic progenitors originate from yolk sac-derived HPP-CFC during late gastrulation.
Resumo:
Applied molecular evolution is a rapidly developing technology that can be used to create and identify novel enzymes that nature has not selected. An important application of this technology is the creation of highly drug-resistant enzymes for cancer gene therapy. Seventeen O6-alkylguanine-DNA alkyltransferase (AGT) mutants highly resistant to O6-benzylguanine (BG) were identified previously by screening 8 million variants, using genetic complementation in Escherichia coli. To examine the potential of these mutants for use in humans, the sublibrary of AGT clones was introduced to human hematopoietic cells and stringently selected for resistance to killing by the combination of BG and 1,3-bis(2-chloroethyl)-1-nitrosourea. This competitive analysis between the mutants in human cells revealed three AGT mutants that conferred remarkable resistance to the combination of BG and 1,3-bis(2-chloroethyl)-1-nitrosourea. Of these, one was recovered significantly more frequently than the others. Upon further analysis, this mutant displayed a level of BG resistance in human hematopoietic cells greater than that of any previously reported mutant.
Resumo:
We describe a mouse model in which p27Kip1 transgene expression is spatially restricted to the central nervous system neuroepithelium and temporally controlled with doxycycline. Transgene-specific transcripts are detectable within 6 h of doxycycline administration, and maximum nonlethal expression is approached within 12 h. After 18–26 h of transgene expression, the G1 phase of the cell cycle is estimated to increase from 9 to 13 h in the neocortical neuroepithelium, the maximum G1 phase length attainable in this proliferative population in normal mice. Thus our data establish a direct link between p27Kip1 and control of G1 phase length in the mammalian central nervous system and unveil intrinsic mechanisms that constrain the G1 phase length to a putative physiological maximum despite ongoing p27Kip1 transgene expression.
Resumo:
It is reasonable to propose that gene expression profiles of purified stem cells could give clues for the molecular mechanisms of stem cell behavior. We took advantage of cDNA subtraction to identify a set of genes selectively expressed in mouse adult hematopoietic stem cells (HSC) as opposed to bone marrow (BM). Analysis of HSC-enriched genes revealed several key regulatory gene candidates, including two novel seven transmembrane (7TM) receptors. Furthermore, by using cDNA microarray techniques we found a large set of HSC-enriched genes that are expressed in mouse neurospheres (a population greatly enriched for neural progenitor cells), but not present in terminally differentiated neural cells. In situ hybridization demonstrated that many of them, including one HSC-enriched 7TM receptor, were selectively expressed in the germinal zones of fetal and adult brain, the regions harboring mouse neural stem cells. We propose that at least some of the transcripts that are selectively and commonly expressed in two or more types of stem cells define a functionally conserved group of genes evolved to participate in basic stem cell functions, including stem cell self-renewal.
Resumo:
Current gene therapy protocols for HIV infection use transfection or murine retrovirus mediated transfer of antiviral genes into CD4+ T cells or CD34+ progenitor cells ex vivo, followed by infusion of the gene altered cells into autologous or syngeneic/allogeneic recipients. While these studies are essential for safety and feasibility testing, several limitations remain: long-term reconstitution of the immune system is not effected for lack of access to the macrophage reservoir or the pluripotent stem cell population, which is usually quiescent, and ex vivo manipulation of the target cells will be too expensive and impractical for global application. In these regards, the lentivirus-specific biologic properties of the HIVs, which underlie their pathogenetic mechanisms, are also advantageous as vectors for gene therapy. The ability of HIV to specifically target CD4+ cells, as well as non-cycling cells, makes it a promising candidate for in vivo gene transfer vector on one hand, and for transduction of non-cycling stem cells on the other. Here we report the use of replication-defective vectors and stable vector packaging cell lines derived from both HIV-1 and HIV-2. Both HIV envelopes and vesicular stomatitis virus glycoprotein G were effective in mediating high-titer gene transfer, and an HIV-2 vector could be cross-packaged by HIV-1. Both HIV-1 and HIV-2 vectors were able to transduce primary human macrophages, a property not shared by murine retroviruses. Vesicular stomatitis virus glycoprotein G-pseudotyped HIV vectors have the potential to mediate gene transfer into non-cycling hematopoietic stem cells. If so, HIV or other lentivirus-based vectors will have applications beyond HIV infection.
Resumo:
Osteoclastogenesis is a complex process that is facilitated by bone marrow stromal cells (SCs). To determine if SCs are an absolute requirement for the differentiation of human hematopoietic precursors into fully mature, osteoclasts (OCs), CD34+ cells were mobilized into the peripheral circulation with granulocyte colony-stimulating factor, harvested by leukapheresis, and purified by magnetic-activated cell sorting. This procedure yields a population of CD34+ cells that does not contain SC precursors, as assessed by the lack of expression of the SC antigen Stro-1, and that differentiates only into hematopoietic cells. We found that CD34+, Stro-1- cells cultured with a combination of granulocyte/macrophage colony-stimulating factor, interleukin 1, and interleukin 3 generated cells that fulfill current criteria for the characterization of OCs, including multinucleation, presence of tartrate-resistant acid phosphatase, and expression of the calcitonin and vitronectin receptors and of pp60c-src tyrosine kinase. These OCs also expressed mRNA for the noninserted isoform of the calcitonin receptor and excavated characteristic resorption pits in devitalized bone slices. These data demonstrate that accessory SCs are not essential for human osteoclastogenesis and that granulocyte colony-stimulating factor treatment mobilizes OC precursors into the peripheral circulation.
Resumo:
Mammalian hematopoietic stem cell (HSC) commitment and differentiation into lymphoid lineage cells proceed through a series of developmentally restricted progenitor compartments. A complete understanding of this process, and how it differs from HSC commitment and differentiation into cells of the myeloid/erythroid lineages, requires the development of model systems that support HSC commitment to the lymphoid lineages. We now describe a human bone marrow stromal cell culture that preferentially supports commitment and differentiation of human HSC to CD19+ B-lineage cells. Fluorescence activated cell sorterpurified CD34++/lineage-cells were isolated from fetal bone marrow and cultured on human fetal bone marrow stromal cells in serum-free conditions containing no exogenous cytokines. Over a period of 3 weeks, CD34++/lineage- cells underwent commitment, differentiation, and expansion into the B lineage. Progressive changes included: loss of CD34, acquisition of and graded increases in the level of cell surface CD19, and appearance of immature B cells expressing mu/kappa or mu/lambda cell surface Ig receptors. The tempo and phenotype of B-cell development was not influenced by the addition of IL-7 (10 ng/ml), or by the addition of goat anti-IL-7 neutralizing antibody. These results indicate a profound difference between mouse and human in the requirement for IL-7 in normal B-cell development, and provide an experimental system to identify and characterize human bone marrow stromal cell-derived molecules crucial for human B lymphopoiesis.
Resumo:
The long-term efficacy of gene therapy using bone marrow transplantation requires the engraftment of genetically altered totipotent hematopoietic stem cells (THSCs). Ex vivo expansion of corrected THSCs is one way to increase the efficiency of the procedure. Similarly, selective in vivo expansion of the therapeutic THSCs rather than the endogenous THSCs could favor the transplant. To test whether a conferred proliferative advantage gene can facilitate the in vitro and in vivo expansion of hematopoietic stem cells, we have generated transgenic mice expressing a truncated receptor for the growth factor erythropoietin. These mice are phenotypically normal, but when treated in vivo with exogenous erythropoietin they exhibit a marked increase in multipotent, clonogenic hematopoietic cells [colony-forming units in the spleen (CFU-S) and CFUs that give rise to granulocytes, erythroid cells, macrophages, and megakaryocytes within the same colony (CFU-GEMM)] in comparison with the wild-type mice. In addition, long-term in vitro culture of tEpoR transgenic bone marrow in the presence of erythropoietin induces exponential expansion of trilineage hematopoietic stem cells not seen with wild-type bone marrow. Thus, the truncated erythropoietin receptor gene shows promise as a means for obtaining cytokine-inducible hematopoietic stem cell proliferation to facilitate the direct targeting of THSCs and to provide a competitive repopulation advantage for transplanted therapeutic stem cells.
Resumo:
Gene transduction of pluripotent human hematopoietic stem cells (HSCs) is necessary for successful gene therapy of genetic disorders involving hematolymphoid cells. Evidence for transduction of pluripotent HSCs can be deduced from the demonstration of a retroviral vector integrated into the same cellular chromosomal DNA site in myeloid and lymphoid cells descended from a common HSC precursor. CD34+ progenitors from human bone marrow and mobilized peripheral blood were transduced by retroviral vectors and used for long-term engraftment in immune-deficient (beige/nude/XIS) mice. Human lymphoid and myeloid populations were recovered from the marrow of the mice after 7-11 months, and individual human granulocyte-macrophage and T-cell clones were isolated and expanded ex vivo. Inverse PCR from the retroviral long terminal repeat into the flanking genomic DNA was performed on each sorted cell population. The recovered cellular DNA segments that flanked proviral integrants were sequenced to confirm identity. Three mice were found (of 24 informative mice) to contain human lymphoid and myeloid populations with identical proviral integration sites, confirming that pluripotent human HSCs had been transduced.
Resumo:
A major goal of experimental and clinical hematology is the identification of mechanisms and conditions that support the expansion of transplantable hematopoietic stem cells. In normal marrow, such cells appear to be identical to (or represent a subset of) a population referred to as long-term-culture-initiating cells (LTC-ICs) so-named because of their ability to produce colony-forming cell (CFC) progeny for > or = 5 weeks when cocultured with stromal fibroblasts. Some expansion of LTC-ICs in vitro has recently been described, but identification of the factors required and whether LTC-IC self-renewal divisions are involved have remained unresolved issues. To address these issues, we examined the maintenance and/or generation of LTC-ICs from single CD34+ CD38- cells cultured for variable periods under different culture conditions. Analysis of the progeny obtained from cultures containing a feeder layer of murine fibroblasts engineered to produce steel factor, interleukin (IL)-3, and granulocyte colony-stimulating factor showed that approximately 20% of the input LTC-ICs (representing approximately 2% of the original CD34+ CD38- cells) executed self-renewal divisions within a 6-week period. Incubation of the same CD34+ CD38- starting populations as single cells in a defined (serum free) liquid medium supplemented with Flt-3 ligand, steel factor, IL-3, IL-6, granulocyte colony-stimulating factor, and nerve growth factor resulted in the proliferation of initial cells to produce clones of from 4 to 1000 cells within 10 days, approximately 40% of which included > or = 1 LTC-IC. In contrast, in similar cultures containing methylcellulose, input LTC-ICs appeared to persist but not divide. Overall the LTC-IC expansion in the liquid cultures was 30-fold in the first 10 days and 50-fold by the end of another 1-3 weeks. Documentation of human LTC-IC self-renewal in vitro and identification of defined conditions that permit their extensive and rapid amplification should facilitate analysis of the molecular mechanisms underlying these processes and their exploitation for a variety of therapeutic applications.
Resumo:
A regulatable retroviral vector in which the v-myc oncogene is driven by a tetracycline-controlled transactivator and a human cytomegalovirus minimal promoter fused to a tet operator sequence was used for conditional immortalization of adult rat neuronal progenitor cells. A single clone, HC2S2, was isolated and characterized. Two days after the addition of tetracycline, the HC2S2 cells stopped proliferating, began to extend neurites, and expressed the neuronal markers tau, NeuN, neurofilament 200 kDa, and glutamic acid decarboxylase in accordance with the reduced production of the v-myc oncoprotein. Differentiated HC2S2 cells expressed large sodium and calcium currents and could fire regenerative action potentials. These results suggest that the suppression of the v-myc oncogene may be sufficient to make proliferating cells exit from cell cycles and induce terminal differentiation. The HC2S2 cells will be valuable for studying the differentiation process of neurons.
Resumo:
An increasingly large number of proteins involved in signal transduction have been identified in recent years and shown to control different steps of cell survival, proliferation, and differentiation. Among the genes recently identified at the tip of the long arm of the human X chromosome, a novel gene, C1, encodes a protein that appears to represent a newly discovered member of the group of signaling proteins involved in regulation of the small GTP binding proteins of the ras superfamily. The protein encoded by C1, p115, is synthesized predominantly in cells of hematopoietic origin. It is characterized by two regions of similarity to motifs present in known proteins: GAP and SH3 homologous regions. Its localization in a narrow cytoplasmic region just below the plasma membrane and its inhibitory effect on stress fiber organization indicate that p115 may down regulate rho-like GTPases in hematopoietic cells.
Resumo:
Rare nucleated fetal cells circulate within maternal blood. Noninvasive prenatal diagnosis by isolation and genetic analysis of these cells is currently being undertaken. We sought to determine if genetic evidence existed for persistent circulation of fetal cells from prior pregnancies. Venous blood samples were obtained from 32 pregnant women and 8 nonpregnant women who had given birth to males 6 months to 27 years earlier. Mononuclear cells were sorted by flow cytometry using antibodies to CD antigens 3, 4, 5, 19, 23, 34, and 38. DNA within sorted cells, amplified by PCR for Y chromosome sequences, was considered predictive of a male fetus or evidence of persistent male fetal cells. In the 32 pregnancies, male DNA was detected in 13 of 19 women carrying a male fetus. In 4 of 13 pregnancies with female fetuses, male DNA was also detected. All of the 4 women had prior pregnancies; 2 of the 4 had prior males and the other 2 had terminations of pregnancy. In 6 of the 8 nonpregnant women, male DNA was detected in CD34+CD38+ cells, even in a woman who had her last son 27 years prior to blood sampling. Our data demonstrate the continued maternal circulation of fetal CD34+ or CD34+CD38+ cells from a prior pregnancy. The prolonged persistence of fetal progenitor cells may represent a human analogue of the microchimerism described in the mouse and may have significance in development of tolerance of the fetus. Pregnancy may thus establish a long-term, low-grade chimeric state in the human female.