182 resultados para Golgi


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several mutations that cause severe forms of the human disease autosomal dominant retinitis pigmentosa cluster in the C-terminal region of rhodopsin. Recent studies have implicated the C-terminal domain of rhodopsin in its trafficking on specialized post-Golgi membranes to the rod outer segment of the photoreceptor cell. Here we used synthetic peptides as competitive inhibitors of rhodopsin trafficking in the frog retinal cell-free system to delineate the potential regulatory sequence within the C terminus of rhodopsin and model the effects of severe retinitis pigmentosa alleles on rhodopsin sorting. The rhodopsin C-terminal sequence QVS(A)PA is highly conserved among different species. Peptides that correspond to the C terminus of bovine (amino acids 324–348) and frog (amino acids 330–354) rhodopsin inhibited post-Golgi trafficking by 50% and 60%, respectively, and arrested newly synthesized rhodopsin in the trans-Golgi network. Peptides corresponding to the cytoplasmic loops of rhodopsin and other control peptides had no effect. When three naturally occurring mutations: Q344ter (lacking the last five amino acids QVAPA), V345M, and P347S were introduced into the frog C-terminal peptide, the inhibitory activity of the peptides was no longer detectable. These observations suggest that the amino acids QVS(A)PA comprise a signal that is recognized by specific factors in the trans-Golgi network. A lack of recognition of this sequence, because of mutations in the last five amino acids causing autosomal dominant retinitis pigmentosa, most likely results in abnormal post-Golgi membrane formation and in an aberrant subcellular localization of rhodopsin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycolipid glycosyltransferases catalyze the stepwise transfer of monosaccharides from sugar nucleotides to proper glycolipid acceptors. They are Golgi resident proteins that colocalize functionally in the organelle, but their intimate relationships are not known. Here, we show that the sequentially acting UDP-GalNAc:lactosylceramide/GM3/GD3 β-1,4-N-acetyl-galactosaminyltransferase and the UDP-Gal:GA2/GM2/GD2 β-1,3-galactosyltransferase associate physically in the distal Golgi. Immunoprecipitation of the respective epitope-tagged versions expressed in transfected CHO-K1 cells resulted in their mutual coimmunoprecipitation. The immunocomplexes efficiently catalyze the two transfer steps leading to the synthesis of GM1 from exogenous GM3 in the presence of UDP-GalNAc and UDP-Gal. The N-terminal domains (cytosolic tail, transmembrane domain, and few amino acids of the stem region) of both enzymes are involved in the interaction because (i) they reproduce the coimmunoprecipitation behavior of the full-length enzymes, (ii) they compete with the full-length counterpart in both coimmunoprecipitation and GM1 synthesis experiments, and (iii) fused to the cyan and yellow fluorescent proteins, they localize these proteins to the Golgi membranes in an association close enough as to allow fluorescence resonance energy transfer between them. We suggest that these associations may improve the efficiency of glycolipid synthesis by channeling the intermediates from the position of product to the position of acceptor along the transfer steps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The positional relationships among all of the visible organelles in a densely packed region of cytoplasm from an insulin secreting, cultured mammalian cell have been analyzed in three dimensions (3-D) at ≈6 nm resolution. Part of a fast frozen/freeze-substituted HIT-T15 cell that included a large portion of the Golgi ribbon was reconstructed in 3-D by electron tomography. The reconstructed volume (3.1 × 3.2 × 1.2 μm3) allowed sites of interaction between organelles, and between microtubules and organellar membranes, to be accurately defined in 3-D and quantitatively analyzed by spatial density analyses. Our data confirm that the Golgi in an interphase mammalian cell is a single, ribbon-like organelle composed of stacks of flattened cisternae punctuated by openings of various sizes [Rambourg, A., Clermont, Y., & Hermo, L. (1979) Am. J. Anat. 154, 455–476]. The data also show that the endoplasmic reticulum (ER) is a single continuous compartment that forms close contacts with mitochondria, multiple trans Golgi cisternae, and compartments of the endo-lysosomal system. This ER traverses the Golgi ribbon from one side to the other via cisternal openings. Microtubules form close, non-random associations with the cis Golgi, the ER, and endo-lysosomal compartments. Despite the dense packing of organelles in this Golgi region, ≈66% of the reconstructed volume is calculated to represent cytoplasmic matrix. We relate the intimacy of structural associations between organelles in the Golgi region, as quantified by spatial density analyses, to biochemical mechanisms for membrane trafficking and organellar communication in mammalian cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Saccharomyces cerevisiae, clathrin is necessary for localization of trans-Golgi network (TGN) membrane proteins, a process that involves cycling of TGN proteins between the TGN and endosomes. To characterize further TGN protein localization, we applied a screen for mutations that cause severe growth defects in combination with a temperature-sensitive clathrin heavy chain. This screen yielded a mutant allele of RIC1. Cells carrying a deletion of RIC1 (ric1Δ) mislocalize TGN membrane proteins Kex2p and Vps10p to the vacuole. Delivery to the vacuole occurs in ric1Δ cells also harboring end3Δ to block endocytosis, indicative of a defect in retrieval to the TGN rather than sorting to endosomes. SYS1, originally discovered as a multicopy suppressor of defects caused by the absence of the Rab GTPase YPT6, was identified as a multicopy suppressor of ric1Δ. Further comparison of ric1Δ and ypt6Δ cells demonstrated identical phenotypes. Multicopy plasmids expressing v-SNAREs Gos1p or Ykt6p, but not other v- and t-SNAREs, partially suppressed phenotypes of ric1Δ and ypt6Δ cells. SLY1–20, a dominant activator of the cis-Golgi network t-SNARE Sed5p, also functioned as a multicopy suppressor. Because Gos1p and Ykt6p interact with Sed5p, these results raise the possibility that TGN membrane protein localization requires Ric1p- and Ypt6p-dependent retrieval to the cis-Golgi network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A native immunoisolation procedure has been used to investigate the role of clathrin-coated vesicles (CCVs) in the transport of vacuolar proteins between the trans-Golgi network (TGN) and the prevacuolar/endosome compartments in the yeast Saccharomyces cerevisiae. We find that Apl2p, one large subunit of the adaptor protein-1 complex, and Vps10p, the carboxypeptidase Y vacuolar protein receptor, are associated with clathrin molecules. Vps10p packaging in CCVs is reduced in pep12Δ and vps34Δ, two mutants that block Vps10p transport from the TGN to the endosome. However, Vps10p sorting is independent of Apl2p. Interestingly, a Vps10CtΔp mutant lacking its C-terminal cytoplasmic domain, the portion of the receptor responsible for carboxypeptidase Y sorting, is also coimmunoprecipitated with clathrin. Our results suggest that CCVs mediate Vps10p transport from the TGN to the endosome independent of direct interactions between Vps10p and clathrin coats. The Vps10p C-terminal domain appears to play a principal role in retrieval of Vps10p from the prevacuolar compartment rather than in sorting from the TGN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphatidylcholine and phosphatidylethanolamine are the most abundant phospholipids in eukaryotic cells and thus have major roles in the formation and maintenance of vesicular membranes. In yeast, diacylglycerol accepts a phosphocholine moiety through a CPT1-derived cholinephosphotransferase activity to directly synthesize phosphatidylcholine. EPT1-derived activity can transfer either phosphocholine or phosphoethanolamine to diacylglcyerol in vitro, but is currently believed to primarily synthesize phosphatidylethanolamine in vivo. In this study we report that CPT1- and EPT1-derived cholinephosphotransferase activities can significantly overlap in vivo such that EPT1 can contribute to 60% of net phosphatidylcholine synthesis via the Kennedy pathway. Alterations in the level of diacylglycerol consumption through alterations in phosphatidylcholine synthesis directly correlated with the level of SEC14-dependent invertase secretion and affected cell viability. Administration of synthetic di8:0 diacylglycerol resulted in a partial rescue of cells from SEC14-mediated cell death. The addition of di8:0 diacylglycerol increased di8:0 diacylglycerol levels 20–40-fold over endogenous long-chain diacylglycerol levels. Di8:0 diacylglcyerol did not alter endogenous phospholipid metabolic pathways, nor was it converted to di8:0 phosphatidic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phocein is a widely expressed, highly conserved intracellular protein of 225 amino acids, the sequence of which has limited homology to the ς subunits from clathrin adaptor complexes and contains an additional stretch bearing a putative SH3-binding domain. This sequence is evolutionarily very conserved (80% identity between Drosophila melanogaster and human). Phocein was discovered by a yeast two-hybrid screen using striatin as a bait. Striatin, SG2NA, and zinedin, the three mammalian members of the striatin family, are multimodular, WD-repeat, and calmodulin-binding proteins. The interaction of phocein with striatin, SG2NA, and zinedin was validated in vitro by coimmunoprecipitation and pull-down experiments. Fractionation of brain and HeLa cells showed that phocein is associated with membranes, as well as present in the cytosol where it behaves as a protein complex. The molecular interaction between SG2NA and phocein was confirmed by their in vivo colocalization, as observed in HeLa cells where antibodies directed against either phocein or SG2NA immunostained the Golgi complex. A 2-min brefeldin A treatment of HeLa cells induced the redistribution of both proteins. Immunocytochemical studies of adult rat brain sections showed that phocein reactivity, present in many types of neurons, is strictly somato-dendritic and extends down to spines, just as do striatin and SG2NA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During skeletal muscle differentiation, the Golgi complex (GC) undergoes a dramatic reorganization. We have now visualized the differentiation and fusion of living myoblasts of the mouse muscle cell line C2, permanently expressing a mannosidase-green fluorescent protein (GFP) construct. These experiments reveal that the reorganization of the GC is progressive (1–2 h) and is completed before the cells start fusing. Fluorescence recovery after photobleaching (FRAP), immunofluorescence, and immunogold electron microscopy demonstrate that the GC is fragmented into elements localized near the endoplasmic reticulum (ER) exit sites. FRAP analysis and the ER relocation of endogenous GC proteins by phospholipase A2 inhibitors demonstrate that Golgi-ER cycling of resident GC proteins takes place in both myoblasts and myotubes. All results support a model in which the GC reorganization in muscle reflects changes in the Golgi-ER cycling. The mechanism is similar to that leading to the dispersal of the GC caused, in all mammalian cells, by microtubule-disrupting drugs. We propose that the trigger for the dispersal results, in muscle, from combined changes in microtubule nucleation and ER exit site localization, which place the ER exit sites near microtubule minus ends. Thus, changes in GC organization that initially appear specific to muscle cells, in fact use pathways common to all mammalian cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activation of the small ras-like GTPase Arf1p requires the action of guanine nucleotide exchange factors. Four Arf1p guanine nucleotide exchange factors have been identified in yeast: Sec7p, Syt1p, Gea1p, and its homologue Gea2p. We identified GEA2 as a multicopy suppressor of a sec21-3 temperature-sensitive mutant. SEC21 encodes the γ-subunit of coatomer, a heptameric protein complex that together with Arf1p forms the COPI coat. GEA1 and GEA2 have at least partially overlapping functions, because deletion of either gene results in no obvious phenotype, whereas the double null mutant is inviable. Conditional mutants defective in both GEA1 and GEA2 accumulate endoplasmic reticulum and Golgi membranes under restrictive conditions. The two genes do not serve completely overlapping functions because a Δgea1 Δarf1 mutant is not more sickly than a Δarf1 strain, whereas Δgea2 Δarf1 is inviable. Biochemical experiments revealed similar distributions and activities for the two proteins. Gea1p and Gea2p exist both in membrane-bound and in soluble forms. The membrane-bound forms, at least one of which, Gea2p, can be visualized on Golgi structures, are both required for vesicle budding and protein transport from the Golgi to the endoplasmic reticulum. In contrast, Sec7p, which is required for protein transport within the Golgi, is not required for retrograde protein trafficking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yeast phosphatidylinositol-transfer protein (Sec14p) is essential for Golgi secretory function and cell viability. This requirement of Sec14p is relieved by genetic inactivation of the cytidine diphosphate-choline pathway for phosphatidycholine (PtdCho) biosynthesis. Standard phenotypic analyses indicate that inactivation of the phosphatidylethanolamine (PtdEtn) pathway for PtdCho biosynthesis, however, does not rescue the growth and secretory defects associated with Sec14p deficiency. We now report inhibition of choline uptake from the media reveals an efficient “bypass Sec14p” phenotype associated with PtdEtn-methylation pathway defects. We further show that the bypass Sec14p phenotype associated with PtdEtn-methylation pathway defects resembles other bypass Sec14p mutations in its dependence on phospholipase D activity. Finally, we find that increased dosage of enzymes that catalyze phospholipase D-independent turnover of PtdCho, via mechanisms that do not result in a direct production of phosphatidic acid or diacylglycerol, effect a partial rescue of sec14-1ts-associated growth defects. Taken together, these data support the idea that PtdCho is intrinsically toxic to yeast Golgi secretory function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A family of related proteins in yeast Saccharomyces cerevisiae is known to have in vitro GTPase-activating protein activity on the Rab GTPases. However, their in vivo function remains obscure. One of them, Gyp1p, acts on Sec4p, Ypt1p, Ypt7p, and Ypt51p in vitro. Here, we present data to reveal its in vivo substrate and the role that it plays in the function of the Rab GTPase. Red fluorescent protein-tagged Gyp1p is concentrated on cytoplasmic punctate structures that largely colocalize with a cis-Golgi marker. Subcellular fractionation of a yeast lysate confirmed that Gyp1p is peripherally associated with membranes and that it cofractionates with Golgi markers. This localization suggests that Gyp1p may only act on Rab GTPases on the Golgi. A gyp1Δ strain displays a growth defect on synthetic medium at 37°C. Overexpression of Ypt1p, but not other Rab GTPases, strongly inhibits the growth of gyp1Δ cells. Conversely, a partial loss-of-function allele of YPT1, ypt1-2, can suppress the growth defect of gyp1Δ cells. Furthermore, deletion of GYP1 can partially suppress growth defects associated with mutants in subunits of transport protein particle complex, a complex that catalyzes nucleotide exchange on Ypt1p. These results establish that Gyp1p functions on the Golgi as a negative regulator of Ypt1p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To quantitatively investigate the trafficking of the transmembrane lectin VIP36 and its relation to cargo-containing transport carriers (TCs), we analyzed a C-terminal fluorescent-protein (FP) fusion, VIP36-SP-FP. When expressed at moderate levels, VIP36-SP-FP localized to the endoplasmic reticulum, Golgi apparatus, and intermediate transport structures, and colocalized with epitope-tagged VIP36. Temperature shift and pharmacological experiments indicated VIP36-SP-FP recycled in the early secretory pathway, exhibiting trafficking representative of a class of transmembrane cargo receptors, including the closely related lectin ERGIC53. VIP36-SP-FP trafficking structures comprised tubules and globular elements, which translocated in a saltatory manner. Simultaneous visualization of anterograde secretory cargo and VIP36-SP-FP indicated that the globular structures were pre-Golgi carriers, and that VIP36-SP-FP segregated from cargo within the Golgi and was not included in post-Golgi TCs. Organelle-specific bleach experiments directly measured the exchange of VIP36-SP-FP between the Golgi and endoplasmic reticulum (ER). Fitting a two-compartment model to the recovery data predicted first order rate constants of 1.22 ± 0.44%/min for ER → Golgi, and 7.68 ± 1.94%/min for Golgi → ER transport, revealing a half-time of 113 ± 70 min for leaving the ER and 1.67 ± 0.45 min for leaving the Golgi, and accounting for the measured steady-state distribution of VIP36-SP-FP (13% Golgi/87% ER). Perturbing transport with AlF4− treatment altered VIP36-SP-GFP distribution and changed the rate constants. The parameters of the model suggest that relatively small differences in the first order rate constants, perhaps manifested in subtle differences in the tendency to enter distinct TCs, result in large differences in the steady-state localization of secretory components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uridine 5′-diphosphate-glucose (UDP-Glc) is transported into the lumen of the Golgi cisternae, where is used for polysaccharide biosynthesis. When Golgi vesicles were incubated with UDP-[3H]Glc, [3H]Glc was rapidly transferred to endogenous acceptors and UDP-Glc was undetectable in Golgi vesicles. This result indicated that a uridine-containing nucleotide was rapidly formed in the Golgi vesicles. Since little is known about the fate of the nucleotide derived from UDP-Glc, we analyzed the metabolism of the nucleotide moiety of UDP-Glc by incubating Golgi vesicles with [α-32P]UDP-Glc, [β-32P]UDP-Glc, and [3H]UDP-Glc and identifying the resulting products. After incubation of Golgi vesicles with these radiolabeled substrates we could detect only uridine 5′-monophosphate (UMP) and inorganic phosphate (Pi). UDP could not be detected, suggesting a rapid hydrolysis of UDP by the Golgi UDPase. The by-products of UDP hydrolysis, UMP and Pi, did not accumulate in the lumen, indicating that they were able to exit the Golgi lumen. The exit of UMP was stimulated by UDP-Glc, suggesting the presence of a putative UDP-Glc/UMP antiporter in the Golgi membrane. However, the exit of Pi was not stimulated by UDP-Glc, suggesting that the exit of Pi occurs via an independent membrane transporter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, the lack of a method for inducing plant cells and their Golgi stacks to differentiate in a synchronous manner has made it difficult to characterize the nature and extent of Golgi retailoring in biochemical terms. Here we report that auxin deprivation can be used to induce a uniform population of suspension-cultured tobacco (Nicotiana tabacum cv BY-2) cells to differentiate synchronously during a 4-d period. Upon removal of auxin, the cells stop dividing, undergo elongation, and differentiate in a manner that mimics the formation of slime-secreting epidermal and peripheral root-cap cells. The morphological changes to the Golgi apparatus include a proportional increase in the number of trans-Golgi cisternae, a switch to larger-sized secretory vesicles that bud from the trans-Golgi cisternae, and an increase in osmium staining of the secretory products. Biochemical alterations include an increase in large, fucosylated, mucin-type glycoproteins, changes in the types of secreted arabinogalactan proteins, and an increase in the amounts and types of molecules containing the peripheral root-cap-cell-specific epitope JIM 13. Taken together, these findings support the hypothesis that auxin deprivation can be used to induce tobacco BY-2 cells to differentiate synchronously into mucilage-secreting cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A crucial step in lysosomal biogenesis is catalyzed by “uncovering” enzyme (UCE), which removes a covering N-acetylglucosamine from the mannose 6-phosphate (Man-6-P) recognition marker on lysosomal hydrolases. This study shows that UCE resides in the trans-Golgi network (TGN) and cycles between the TGN and plasma membrane. The cytosolic domain of UCE contains two potential endocytosis motifs: 488YHPL and C-terminal 511NPFKD. YHPL is shown to be the more potent of the two in retrieval of UCE from the plasma membrane. A green-fluorescent protein-UCE transmembrane-cytosolic domain fusion protein colocalizes with TGN 46, as does endogenous UCE in HeLa cells, showing that the transmembrane and cytosolic domains determine intracellular location. These data imply that the Man-6-P recognition marker is formed in the TGN, the compartment where Man-6-P receptors bind cargo and are packaged into clathrin-coated vesicles.