144 resultados para Gene Transfer Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of the antitumor immune response after gene transfer of a foreign major histocompatibility complex class I protein, HLA-B7, was performed. Ten HLA-B7-negative patients with stage IV melanoma were treated in an effort to stimulate local tumor immunity. Plasmid DNA was detected within treated tumor nodules, and RNA encoding recombinant HLA-B7 or HLA-B7 protein was demonstrated in 9 of 10 patients. T cell migration into treated lesions was observed and tumor-infiltrating lymphocyte reactivity was enhanced in six of seven and two of two patients analyzed, respectively. In contrast, the frequency of cytotoxic T lymphocyte against autologous tumor in circulating peripheral blood lymphocytes was not altered significantly, suggesting that peripheral blood lymphocyte reactivity is not indicative of local tumor responsiveness. Local inhibition of tumor growth was detected after gene transfer in two patients, one of whom showed a partial remission. This patient subsequently received treatment with tumor-infiltrating lymphocytes derived from gene-modified tumor, with a complete regression of residual disease. Thus, gene transfer with DNA–liposome complexes encoding an allogeneic major histocompatibility complex protein stimulated local antitumor immune responses that facilitated the generation of effector cells for immunotherapy of cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As in Alzheimer-disease (AD) brain, vacuolated muscle fibers of inclusion-body myositis (IBM) contain abnormally accumulated beta-amyloid precursor protein (beta APP), including its beta-amyloid protein epitope, and increased beta APP-751 mRNA. Other similarities between IBM muscle and AD brain phenotypes include paired helical filaments, hyperphosphorylated tau protein, apolipoprotein E, and mitochondrial abnormalities, including decreased cytochrome-c oxidase (COX) activity. The pathogenesis of these abnormalities in IBM muscle and AD brain is not known. We now report that direct transfer of the beta APP gene, using adenovirus vector, into cultured normal human muscle fibers causes structural abnormalities of mitochondria and decreased COX activity. In this adenovirus-mediated beta APP gene transfer, we demonstrated that beta APP overproduction can induce mitochondrial abnormalities. The data suggest that excessive beta APP may be responsible for mitochondrial and COX abnormalities in IBM muscle and perhaps AD brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several polycations possessing substantial buffering capacity below physiological pH, such as lipopolyamines and polyamidoamine polymers, are efficient transfection agents per se--i.e., without the addition of cell targeting or membrane-disruption agents. This observation led us to test the cationic polymer polyethylenimine (PEI) for its gene-delivery potential. Indeed, every third atom of PEI is a protonable amino nitrogen atom, which makes the polymeric network an effective "proton sponge" at virtually any pH. Luciferase reporter gene transfer with this polycation into a variety of cell lines and primary cells gave results comparable to, or even better than, lipopolyamines. Cytotoxicity was low and seen only at concentrations well above those required for optimal transfection. Delivery of oligonucleotides into embryonic neurons was followed by using a fluorescent probe. Virtually all neurons showed nuclear labeling, with no toxic effects. The optimal PEI cation/anion balance for in vitro transfection is only slightly on the cationic side, which is advantageous for in vivo delivery. Indeed, intracerebral luciferase gene transfer into newborn mice gave results comparable (for a given amount of DNA) to the in vitro transfection of primary rat brain endothelial cells or chicken embryonic neurons. Together, these properties make PEI a promising vector for gene therapy and an outstanding core for the design of more sophisticated devices. Our hypothesis is that its efficiency relies on extensive lysosome buffering that protects DNA from nuclease degradation, and consequent lysosomal swelling and rupture that provide an escape mechanism for the PEI/DNA particles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have developed a noninvasive detection method for expression of viral-mediated gene transfer. A recombinant adenovirus was constructed by using the gene for arginine kinase (AK), which is the invertebrate correlate to the vertebrate ATP-buffering enzyme, creatine kinase. Gene expression was noninvasively monitored using 31P-magnetic resonance spectroscopy (31P-MRS). The product of the AK enzyme, phosphoarginine (PArg), served as an MRS-visible reporter of AK expression. The recombinant adenovirus coding for arginine kinase (rAdCMVAK) was injected into the right hindlimbs of neonatal mice. Two weeks after injection of rAdCMVAK, a unique 31P-MRS resonance was observed. It was observable in all rAdCMVAK injected hindlimbs and was not present in the contralateral control or the vehicle injected limb. PArg and phosphocreatine (PCr) concentrations were calculated to be 11.6 ± 0.90 and 13.6 ± 1.1 mM respectively in rAdCMVAK injected limbs. AK activity was demonstrated in vivo by monitoring the decreases in PArg and ATP resonances during prolonged ischemia. After 1 h of ischemia intracellular pH was 6.73 ± 0.06, PCr/ATP was decreased by 77 ± 8%, whereas PArg/ATP was decreased by 50 ± 15% of basal levels. PArg and PCr returned to basal levels within 5 min of the restoration of blood flow. AK activity persisted for at least 8 mo after injection, indicating that adenoviral-mediated gene transfer can produce stable expression for long periods of time. Therefore, the cDNA encoding AK provides a useful reporter gene that allows noninvasive and repeated monitoring of gene expression after viral mediated gene transfer to muscle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previously, we established that natural killer (NK) cells from C57BL/6 (B6), but not BALB/c, mice lysed Chinese hamster ovary (CHO) cells, and we mapped the locus that determines this differential CHO-killing capacity to the NK gene complex on chromosome 6. The localization of Chok in the NK gene complex suggested that it may encode either an activating or an inhibitory receptor. Here, results from a lectin-facilitated lysis assay predicted that Chok is an activating B6 NK receptor. Therefore, we immunized BALB/c mice with NK cells from BALB.B6–Cmv1r congenic mice and generated a mAb, designated 4E4, that blocked B6-mediated CHO lysis. mAb 4E4 also redirected lysis of Daudi targets, indicating its reactivity with an activating NK cell receptor. Furthermore, only the 4E4+ B6 NK cell subset mediated CHO killing, and this lysis was abrogated by preincubation with mAb 4E4. Flow cytometric analysis indicated that mAb 4E4 specifically reacts with Ly-49D but not Ly-49A, B, C, E, G, H, or I transfectants. Finally, gene transfer of Ly-49DB6 into BALB/c NK cells conferred cytotoxic capacity against CHO cells, thus establishing that the Ly-49D receptor is sufficient to activate NK cells to lyse this target. Hence, Ly-49D is the Chok gene product and is a mouse NK cell receptor capable of directly triggering natural killing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Analyses of complete genomes indicate that a massive prokaryotic gene transfer (or transfers) preceded the formation of the eukaryotic cell. In comparisons of the entire set of Methanococcus jannaschii genes with their orthologs from Escherichia coli, Synechocystis 6803, and the yeast Saccharomyces cerevisiae, it is shown that prokaryotic genomes consist of two different groups of genes. The deeper, diverging informational lineage codes for genes which function in translation, transcription, and replication, and also includes GTPases, vacuolar ATPase homologs, and most tRNA synthetases. The more recently diverging operational lineage codes for amino acid synthesis, the biosynthesis of cofactors, the cell envelope, energy metabolism, intermediary metabolism, fatty acid and phospholipid biosynthesis, nucleotide biosynthesis, and regulatory functions. In eukaryotes, the informational genes are most closely related to those of Methanococcus, whereas the majority of operational genes are most closely related to those of Escherichia, but some are closest to Methanococcus or to Synechocystis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The tumor suppressor gene FHIT spans a common fragile site and is highly susceptible to environmental carcinogens. FHIT inactivation and loss of expression is found in a large fraction of premaligant and malignant lesions. In this study, we were able to inhibit tumor development by oral gene transfer, using adenoviral or adenoassociated viral vectors expressing the human FHIT gene, in heterozygous Fhit+/− knockout mice, that are prone to tumor development after carcinogen exposure. We therefore suggest that FHIT gene therapy could be a novel clinical approach not only in treatment of early stages of cancer, but also in prevention of human cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In vivo assessment of gene expression is desirable to obtain information on the extent and duration of transduction of tissue after gene delivery. We have developed an in vivo, potentially noninvasive, method for detecting virally mediated gene transfer to the liver. The method employs an adenoviral vector carrying the gene for the brain isozyme of murine creatine kinase (CK-B), an ATP-buffering enzyme expressed mainly in muscle and brain but absent from liver, kidney, and pancreas. Gene expression was monitored by 31P magnetic resonance spectroscopy (MRS) using the product of the CK enzymatic reaction, phosphocreatine, as an indicator of transfection. The vector was administered into nude mice by tail vein injection, and exogenous creatine was administered in the drinking water and by i.p. injection of 2% creatine solution before 31P MRS examination, which was performed on surgically exposed livers. A phosphocreatine resonance was detected in livers of mice injected with the vector and was absent from livers of control animals. CK expression was confirmed in the injected animals by Western blot analysis, enzymatic assays, and immunofluorescence measurements. We conclude that the syngeneic enzyme CK can be used as a marker gene for in vivo monitoring of gene expression after virally mediated gene transfer to the liver.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Species of pathogenic microbes are composed of an array of evolutionarily distinct chromosomal genotypes characterized by diversity in gene content and sequence (allelic variation). The occurrence of substantial genetic diversity has hindered progress in developing a comprehensive understanding of the molecular basis of virulence and new therapeutics such as vaccines. To provide new information that bears on these issues, 11 genes encoding extracellular proteins in the human bacterial pathogen group A Streptococcus identified by analysis of four genomes were studied. Eight of the 11 genes encode proteins with a LPXTG(L) motif that covalently links Gram-positive virulence factors to the bacterial cell surface. Sequence analysis of the 11 genes in 37 geographically and phylogenetically diverse group A Streptococcus strains cultured from patients with different infection types found that recent horizontal gene transfer has contributed substantially to chromosomal diversity. Regions of the inferred proteins likely to interact with the host were identified by molecular population genetic analysis, and Western immunoblot analysis with sera from infected patients confirmed that they were antigenic. Real-time reverse transcriptase–PCR (TaqMan) assays found that transcription of six of the 11 genes was substantially up-regulated in the stationary phase. In addition, transcription of many genes was influenced by the covR and mga trans-acting gene regulatory loci. Multilocus investigation of putative virulence genes by the integrated approach described herein provides an important strategy to aid microbial pathogenesis research and rapidly identify new targets for therapeutics research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experimental studies of complete mammalian genes and other genetic domains are impeded by the difficulty of introducing large DNA molecules into cells in culture. Previously we have shown that GST–Z2, a protein that contains three zinc fingers and a proline-rich multimerization domain from the polydactyl zinc finger protein RIP60 fused to glutathione S-transferase (GST), mediates DNA binding and looping in vitro. Atomic force microscopy showed that GST–Z2 is able to condense 130–150 kb bacterial artificial chromosomes (BACs) into protein–DNA complexes containing multiple DNA loops. Condensation of the DNA loops onto the Z2 protein–BAC DNA core complexes with cationic lipid resulted in particles that were readily transferred into multiple cell types in culture. Transfer of total genomic linear DNA containing amplified DHFR genes into DHFR– cells by GST–Z2 resulted in a 10-fold higher transformation rate than calcium phosphate co-precipitation. Chinese hamster ovarian cells transfected with a BAC containing the human TP53 gene locus expressed p53, showing native promoter elements are active after GST–Z2-mediated gene transfer. Because DNA condensation by GST–Z2 does not require the introduction of specific recognition sequences into the DNA substrate, condensation by the Z2 domain of RIP60 may be used in conjunction with a variety of other agents to provide a flexible and efficient non-viral platform for the delivery of large genes into mammalian cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe the construction of a safe, replication-defective and efficient lentiviral vector suitable for in vivo gene delivery. The reverse transcription of the vector was found to be a rate-limiting step; therefore, promoting the reaction inside the vector particles before delivery significantly enhanced the efficiency of gene transfer. After injection into the brain of adult rats, sustained long-term expression of the transgene was obtained in the absence of detectable pathology. A high proportion of the neurons in the areas surrounding the injection sites of the vector expressed the transduced beta-galactosidase gene. This pattern was invariant in animals sacrificed several months after a single administration of the vector. Transduction occurs by integration of the vector genome, as it was abolished by a single amino acid substitution in the catalytic site of the integrase protein incorporated in the vector. Development of clinically acceptable derivatives of the lentiviral vector may thus enable the sustained delivery of significant amounts of a therapeutic gene product in a wide variety of somatic tissues.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Current gene therapy protocols for HIV infection use transfection or murine retrovirus mediated transfer of antiviral genes into CD4+ T cells or CD34+ progenitor cells ex vivo, followed by infusion of the gene altered cells into autologous or syngeneic/allogeneic recipients. While these studies are essential for safety and feasibility testing, several limitations remain: long-term reconstitution of the immune system is not effected for lack of access to the macrophage reservoir or the pluripotent stem cell population, which is usually quiescent, and ex vivo manipulation of the target cells will be too expensive and impractical for global application. In these regards, the lentivirus-specific biologic properties of the HIVs, which underlie their pathogenetic mechanisms, are also advantageous as vectors for gene therapy. The ability of HIV to specifically target CD4+ cells, as well as non-cycling cells, makes it a promising candidate for in vivo gene transfer vector on one hand, and for transduction of non-cycling stem cells on the other. Here we report the use of replication-defective vectors and stable vector packaging cell lines derived from both HIV-1 and HIV-2. Both HIV envelopes and vesicular stomatitis virus glycoprotein G were effective in mediating high-titer gene transfer, and an HIV-2 vector could be cross-packaged by HIV-1. Both HIV-1 and HIV-2 vectors were able to transduce primary human macrophages, a property not shared by murine retroviruses. Vesicular stomatitis virus glycoprotein G-pseudotyped HIV vectors have the potential to mediate gene transfer into non-cycling hematopoietic stem cells. If so, HIV or other lentivirus-based vectors will have applications beyond HIV infection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using genetically engineered glomerular mesangial cells, an in vivo gene transfer approach was developed that specifically targets the renal glomerulus. By combining this system with a tetracycline (Tc)-responsive promoter, the present study aimed to create a reversible on/off system for site-specific in vivo control of exogenous gene activity within the glomerulus. In the Tc regulatory system, a Tc-controlled transactivator (tTA) encoded by a regulator plasmid induces target gene transcription by binding to a tTA-responsive promoter located in a response plasmid. Tc inhibits this tTA-dependent transactivation via its affinity for tTA. In double-transfected cells, therefore, the activity of a transgene can be controlled by Tc. Cultured rat mesangial cells were cotransfected with a regulator plasmid and a response plasmid that introduces a beta-galactosidase gene. In vitro, stable double-transfectant MtTAG cells exhibited no beta-galactosidase activity in the presence of Tc. However, following withdrawal of Tc from culture media, expression of beta-galactosidase was induced within 24 h. When Tc was again added, the expression was rapidly resuppressed. Low concentrations of Tc were sufficient to maintain the silent state of tTA-dependent promoter. MtTAG cells were then transferred into the rat glomeruli via renal artery injection. In the isolated chimeric glomeruli, expression of beta-galactosidase was induced ex vivo in the absence of Tc, whereas it was repressed in its presence. When Tc-pretreated MtTAG cells were transferred into the glomeruli of untreated rats, beta-galactosidase expression was induced in vivo within 3 days. Oral administration of Tc dramatically suppressed this induction. These data demonstrate the feasibility of using mesangial cell vectors combined with the Tc regulatory system for site-specific in vivo control of exogenous gene expression in the glomerulus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have generated a chimeric gene transfer vector that combines the simplicity of plasmids with the infectivity and long-term expression of retroviruses. We replaced the env gene of a Moloney murine leukemia virus-derived provirus by a foreign gene, generating a plasmid that upon transfer to tumor cells generates noninfectious retroviral particles carrying the transgene. We added to this plasmid an independent expression cassette comprising a cytomegalovirus promoter, an amphotropic retroviral envelope, and a polyadenylylation signal from simian virus 40. These constructs were designed to minimize the risk of recombination generating replication-competent retroviruses. Their only region of homology is a 157-bp sequence with 53% identity. We show that the sole transfection of this plasmid in various cell lines generates infectious but defective retroviral particles capable of efficiently infecting and expressing the transgene. The formation of infectious particles allows the transgene propagation in vitro. Eight days after transfection in vitro, the proportion of cells expressing the transgene is increased by 10-60 times. There was no evidence of replication-competent retrovirus generation in these experiments. The intratumoral injection of this plasmid, but not of the control vector lacking the env gene, led to foci of transgene-expressing cells, suggesting that the transgene had propagated in situ. Altogether, these "plasmoviruses" combine advantages of viral and non-viral vectors. They should be easy to produce in large quantity as clinical grade materials and should allow efficient and safe in situ targeting of tumor cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fast skeletal muscles of mdx (X chromosome-linked muscular dystrophy) mice were injected after birth with a recombinant adenovirus containing a minidys- trophin gene, a 6.3-kbp cDNA coding for the N- and C-terminal ends of dystrophin. Adult muscles were challenged by forced lengthening during tetanic contractions. Stretch-induced mechanical and histological damages were much reduced in injected muscles, in direct proportion of the Miniber of fibers expressing minidystrophin. Damaged fibers were preferentially found among minidystrophin-negative regions. Minidystrostrophin confers an important functional and structural protection of limb muscles against high mechanical stress, even after a partial somatic gene transfer.