49 resultados para GH DEFICIENCY
Resumo:
Adenosine deaminase (ADA, EC 3.5.4.4) is a ubiquitous enzyme in the purine catabolic pathway. In contrast to the widespread tissue distribution of this enzyme, inherited ADA deficiency in human results in a tissue-specific severe combined immunodeficiency. To explain the molecular basis for this remarkable tissue specificity, we have used a genetic approach to study ADA deficiency. We demonstrate that ADA deficiency causes depletion of CD8low transitional and CD4+CD8+ double-positive thymocytes by an apoptotic mechanism. This effect is mediated by a p53-dependent pathway, since p53-deficient mice are resistant to the apoptosis induced by ADA deficiency. DNA damage, known to be caused by the abnormal accumulation of dATP in ADA deficiency, is therefore responsible for the ablation of T-cell development and for the immunodeficiency. The two thymocyte subsets most susceptible to apoptosis induced by ADA deficiency are also the two thymocyte subsets with the lowest levels of bcl-2 expression. We show that thymocytes from transgenic mice that overexpress bcl-2 in the thymus are rescued from apoptosis induced by ADA deficiency. Thus, the tissue specificity of the pathological effects of ADA deficiency is due to the low bcl-2 expression in CD8low transitional and CD4+CD8+ double-positive thymocytes.
Resumo:
DNA repair is required by organisms to prevent the accumulation of mutations and to maintain the integrity of genetic information. Mammalian cells that have been treated with agents that damage DNA have an increase in p53 levels, a p53-dependent arrest at G1 in the cell cycle, and a p53-dependent apoptotic response. It has been hypothesized that this block in cell cycle progression is necessary to allow time for DNA repair or to direct the damaged cell to an apoptotic pathway. This hypothesis predicts that p53-deficient cells would have an abnormal apoptotic response and exhibit a "mutator" phenotype. Using a sensitive assay for the accumulation of point mutations, small deletions, and insertions, we have directly tested whether p53-deficient cells exhibit an increased frequency of mutation before and after exposure to DNA-damaging agents. We report that wild-type and p53-deficient fibroblasts, thymocytes, and tumor tissue have indistinguishable rates of point mutation accumulation in a transgenic lacI target gene. These results suggest that the role of p53 in G1 checkpoint control and tumor suppression does not affect the accumulation of point mutations.
Resumo:
The retinoblastoma susceptibility gene (Rb) participates in controlling the G1/S-phase transition, presumably by binding and inactivating E2F transcription activator family members. Mouse embryonic fibroblasts (MEFs) with no, one, or two inactivated Rb genes were used to determine the specific contributions of Rb protein to cell cycle progression and gene expression. MEFs lacking both Rb alleles (Rb-/-) entered S phase in the presence of the dihydrofolate reductase inhibitor methotrexate. Two E2F target genes, dihydrofolate reductase and thymidylate synthase, displayed elevated mRNA and protein levels in Rb- MEFs. Since absence of functional Rb protein in MEFs is sufficient for S-phase entry under growth-limiting conditions, these data indicate that the E2F complexes containing Rb protein, and not the Rb-related proteins p107 and p130, may be rate limiting for the G1/S transition. Antineoplastic drugs caused accumulation of p53 in the nuclei of both Rb+/+ and Rb-/- MEFs. While p53 induction led to apoptosis in Rb-/- MEFs, Rb+/- and Rb+/+ MEFs underwent cell cycle arrest without apoptosis. These results reveal that diverse growth signals work through Rb to regulate entry into S phase, and they indicate that absence of Rb protein produces a constitutive DNA replication signal capable of activating a p53-associated apoptotic response.
Resumo:
Analogs of the 29 amino acid sequence of human growth hormone-releasing hormone (hGH-RH) with agmatine (Agm) in position 29, desaminotyrosine (Dat) in position 1, norleucine (Nle) in position 27, and L-alpha-aminobutyric acid (Abu) in position 15 have been synthesized, and their biological activity was evaluated. Some peptides contained one or two residues of ornithine (Orn) instead of Lys in positions 12 and 21 and additional replacements in positions 8 and 28. All analogs were found to be more potent than hGH-RH-(1-29)-NH2 in the superfused rat pituitary cell system. In tests in vivo in rats after subcutaneous administration, the analogs JI-22, [Dat1, Orn12,21, Abu15, Nle27, Agm29]hGH-RH-(1-29); JI-34, [Dat1, Orn12,21,Abu15,Nle27, Asp28, Agm29]hGH-RH-(1-29); JI-36, [Dat1, Thr8, Orn12,21, Abu15,Nle27,Asp28,Agm29]hGH-RH-(1-29); and JI-38, [Dat1,Gln8, Orn12,21,Abu15,Nle27,Asp28,Agm29]hGH-RH-(1 -29) displayed a potency 44.6,80.9,95.8, and 71.4 times greater, respectively, than that of hGH-RH-(1-29)-NH2 at 15 min and 217.1, 89.7, 87.9, and 116.8 times greater at 30 min. After intravenous administration, JI-22, JI-36, and JI-38 were 3.2-3.8 times more potent than hGH-RH-(1-29)-NH2 at 5 min and 6.1-8.5 times more active at 15 min. All analogs were found to have higher binding affinities for GH-RH receptors on rat pituitary cells than hGH-RH-(1-29)-NH2. Because of high activity and greater stability, these analogs could be considered for therapy of patients with growth hormone deficiency.