57 resultados para Fibroblast viability
Resumo:
An adipocyte membrane glycoprotein, (FAT), homologous to human CD36, has been previously implicated in the binding/transport of long-chain fatty acids. It bound reactive derivatives of long-chain fatty acids and binding was specific and associated with significant inhibition of fatty acid uptake. Tissue distribution of the protein and regulation of its expression were also consistent with its postulated role. In this report, we have examined the effects of FAT expression on rates and properties of fatty acid uptake by Ob17PY fibroblasts lacking the protein. Three clones (P21, P22, and P25) were selected based on FAT mRNA and protein levels. Cell surface labeling could be demonstrated with the anti-CD36 antibody FITC-OKM5. In line with this, the major fraction of immunoreactive FAT was associated with the plasma membrane fraction. Assays of oleate and/or palmitate uptake demonstrated higher rates in the three FAT-expressing clones, compared to cells transfected with the empty vector. Clone P21, which had the highest protein levels on Western blots, exhibited the largest increase in transport rates. Fatty acid uptake in FAT-expressing P21 cells reflected two components, a phloretin-sensitive high-affinity saturable component with a Km of 0.004 microM and a basal phloretin-insensitive component that was a linear function of unbound fatty acid. P21 cells incorporated more exogenous fatty acid into phospholipids, indicating that binding of fatty acids was followed by their transfer into the cell and that both processes were increased by FAT expression. The data support the interpretation that FAT/CD36 functions as a high-affinity membrane receptor/transporter for long-chain fatty acids.
Resumo:
Expression of mitogenic basic fibroblast growth factor (bFGF) in the central nervous system is inhibited by direct cell contact and is implicated in reactive and neoplastic transformation of astrocytes. The molecular mechanisms controlling expression of bFGF were examined in cultures of human astrocytes. Cell-density-dependent depletion of bFGF mRNA levels parallels changes in bFGF gene protein. Regulation of transcription of a bFGF luciferase reporter gene containing an upstream region (bp -1800 to +314) of the bFGF gene promoter mimicks the density-dependent regulation of the endogenous bFGF gene in transfected astrocytes. Deletion analysis has identified a fragment (bp -650 to -513) and sequences further downstream (bp -274 to +314) as the regions required for the regulation of bFGF gene activity by cell density. Unlike in astrocytes, changing the cell density of glioma cell cultures does not affect the levels of bFGF protein and mRNA. bFGF luciferase constructs were expressed at the same level in high- or low-density cultures of glioma cells, indicating altered regulation of the bFGF gene promoter. Electrophoretic mobility shift assays showed binding of nuclear proteins to a fragment of bFGF gene promoter from bp -650 to -453. This binding was abolished by a deletion of the upstream cell-density-responsive region (bp -650 to -512). Binding was observed with nuclear extracts from subconfluent astrocytes but was reduced in extracts from confluent astrocytes. Our results indicate that induction of bFGF in astrocytes upon reduction of cell density is mediated transcriptionally by positive trans-acting factors interacting with bFGF promoter. In contrast, nuclear proteins from glioma cells bind to the promoter region from bp -650 to -453 independent of cell density. Thus, the constitutive binding of trans-acting factor(s) to the region of the bFGF promoter from bp -650 to -453 may be responsible for the continuous expression of bFGF that leads to the uncontrolled growth of glioma cells.
Resumo:
The CcrM adenine DNA methyltransferase, which specifically modifies GANTC sequences, is necessary for viability in Caulobacter crescentus. To our knowledge, this is the first example of an essential prokaryotic DNA methyltransferase that is not part of a DNA restriction/modification system. Homologs of CcrM are widespread in the alpha subdivision of the Proteobacteria, suggesting that methylation at GANTC sites may have important functions in other members of this diverse group as well. Temporal control of DNA methylation state has an important role in Caulobacter development, and we show that this organism utilizes an unusual mechanism for control of remethylation of newly replicated DNA. CcrM is synthesized de novo late in the cell cycle, coincident with full methylation of the chromosome, and is then subjected to proteolysis prior to cell division.
Resumo:
Central to signaling by fibroblast growth factors (FGFs) is the oligomeric interaction of the growth factor and its high-affinity cell surface receptor, which is mediated by heparin-like polysaccharides. It has been proposed that the binding of heparin-like polysaccharides to FGF induces a conformational change in FGF, resulting in the formation of FGF dimers or oligomers, and this biologically active form is 'presented' to the FGF receptor for signal transduction. In this study, we show that monomeric basic FGF (FGF-2) preferentially self-associates and forms FGF-2 dimers and higher-order oligomers. As a consequence, FGF-2 monomers are oriented for binding to heparin-like polysaccharides. We also show that heparin-like polysaccharides can readily bind to self-associated FGF-2 without causing a conformational change in FGF-2 or disrupting the FGF-2 self-association, but that the bound polysaccharides only additionally stabilize the FGF-2 self-association. The preferential self-association corresponds to FGF-2 translations along two of the unit cell axes of the FGF-2 crystal structures. These two axes represent the two possible heparin binding directions, whereas the receptor binding sites are oriented along the third axis. Thus, we propose that preferential FGF-2 self-association, further stabilized by heparin, like "beads on a string," mediates FGF-2-induced receptor dimerization and activation. The observed FGF-2 self-association, modulated by heparin, not only provides a mechanism of growth factor activation but also represents a regulatory mechanism governing FGF-2 biological activity.
Resumo:
Here we show that the mature cochlear neurons are a rich source of acidic fibroblast growth factor (aFGF), which is expressed in the neuronal circuitry consisting of afferent and efferent innervation. The site of action of neuronal aFGF is likely to reside in the organ of Corti, where one of the four known FGF receptor (FGFR) tyrosine kinases--namely, FGFR-3 mRNA--is expressed. Following acoustic overstimulation, known to cause damage to the organ of Corti, a rapid up-regulation of FGFR-3 is evident in this sensory epithelium, at both mRNA and protein levels. The present results provide in vivo evidence for aFGF being a sensory neuron-derived, anterogradely transported factor that may exert trophic effects on a peripheral target tissue. In this sensory system, aFGF, rather than being a neurotrophic factor, seems to promote maintenance of the integrity of the organ of Corti. In addition, aFGF, released from the traumatized nerve endings, may be one of the first signals initiating protective recovery and repair processes following damaging auditory stimuli.
Resumo:
The granulocyte/macrophage colony-stimulating factor (GM-CSF) receptor (GMR) is a heterodimeric receptor expressed by myeloid lineage cells. In this study we have investigated domains of the GMR beta-chain (GMR beta) involved in maintaining cellular viability. Using a series of nested GMR beta deletion mutants, we demonstrate that there are at least two domains of GMR beta that contribute to viability signals. Deletion of amino acid residues 626-763 causes a viability defect that can be rescued with fetal calf serum (FCS). Deletion of residues 518-626, in contrast, causes a further decrement in viability that can be only partially compensated by the addition of FCS. GMR beta truncated proximal to amino acid 517 will not support long-term growth under any conditions. Site-directed mutagenesis of tyrosine-750 (Y750), which is contained within the distal viability domain, to phenylalanine eliminates all demonstrable tyrosine phosphorylation of GMR beta. Cell lines transfected with mutant GMR beta (Y750-->F) have a viability disadvantage when compared to cell lines containing wild-type GMR that is partially rescued by the addition of FCS. We studied signal transduction in mutant cell lines in an effort to identify pathways that might participate in the viability signal. Although tyrosine phosphorylation of JAK2, SHPTP2, and Vav is intact in Y750-->F mutant cell lines, Shc tyrosine phosphorylation is reduced. This suggests a potential role for Y750 and potentially Shc in a GM-CSF-induced signaling pathway that helps maintain cellular viability.
Resumo:
Molecular biomaterial engineering permits in vivo transplantation of cells and tissues, offering the promise of restoration of physiologic control rather than pharmacologic dosing with isolated compounds. We engrafted endothelial cells on Gelfoam biopolymeric matrices with retention of viability, normal growth kinetics, immunoreactivity, and biochemical activity. The production of heparan sulfate proteoglycan and inhibition of basic fibroblast growth factor binding and activity by engrafted cells were indistinguishable from endothelial cells grown in culture. Perivascular implantation of Gelfoam-endothelial cell scaffolds around balloon-denuded rat carotid arteries reduced intimal hyperplasia 88.1%, far better than the isolated administration of heparin, the most effective endothelial mimic compound. In concert with a reduction in intimal area, cell proliferation was reduced by > 90%. To our knowledge, there have been no previous reports of extravascular cell implants controlling vasculoproliferative disease. Tissue engineered cells offer the potential for potent methods of vascular growth regulation and insight into the complex autocrine-paracrine control mechanisms within the blood vessel wall.
Resumo:
A number of factors both stimulating and inhibiting angiogenesis have been described. In the current work, we demonstrate that the angiogenic factor vascular endothelial growth factor (VEGF) activates mitogen-activated protein kinase (MAPK) as has been previously shown for basic fibroblast growth factor. The antiagiogenic factor 16-kDa N-terminal fragment of human prolactin inhibits activation of MAPK distal to autophosphorylation of the putative VEGF receptor, Flk-1, and phospholipase C-gamma. These data show that activation and inhibition of MAPK may play a central role in the control of angiogenesis.
Resumo:
Despite significant infiltration into tumors and atherosclerotic plaques, the role of T lymphocytes in these pathological conditions is still unclear. We have demonstrated that tumor-infiltrating lymphocytes (TILs) and plaque-infiltrating lymphocytes (PILs) produce heparin-binding epidermal growth factor-like growth factor (HB-EGF) and basic fibroblast growth factor (bFGF) in vitro under nonspecific conditions and in vivo in tumors by immunohistochemical staining. HB-EGF and bFGF derived from TILs and PILs directly stimulated tumor cells and vascular smooth muscle cells (SMCs) in vitro, respectively, while bFGF displayed angiogenic properties. Therefore, T cells may play a critical role in the SMC hyperplasia of atherosclerosis and support tumor progression by direct stimulation and angiogenesis.
Resumo:
Human diploid fibroblast cells cease growth in culture after a finite number of population doublings. To address the cause of growth cessation in senescent IMR-90 human fibroblast cells, we determined the level of oxidative DNA damage by using 8-oxoguanine excised from DNA and 8-oxo-2'-deoxyguanosine in DNA as markers. Senescent cells excise from DNA four times more 8-oxoguanine per day than do early-passage young cells. The steady-state level of 8-oxo-2'-deoxyguanosine in DNA is approximately 35% higher in senescent cells than in young cells. Measurement of protein carbonyls shows that senescent cells did not appear to have elevated protein oxidation. To reduce the level of oxidative damage, we cultured cells under a more physiological O2 concentration (3%) and compared the replicative life span to the cells cultured at the O2 concentration of air (20%). We found that cells grown under 3% O2 achieved 50% more population doublings during their lifetime. Such an extension of life span resulted from the delayed onset of senescence and elevation of growth rate and saturation density of cells at all passages. The spin-trapping agent alpha-phenyl-t-butyl nitrone (PBN), which can act as an antioxidant, also effectively delayed senescence and rejuvenated near senescent cells. The effect is dose-dependent and is most pronounced for cells at the stage just before entry into senescence. Our data support the hypothesis that oxidative DNA damage contributes to replicative cessation in human diploid fibroblast cells.
Resumo:
We investigated the influence of interferons alpha, beta, and gamma (IFN-alpha, -beta, and -gamma) on the production of basic fibroblast growth factor (bFGF) by human renal carcinoma cells. The human renal carcinoma cell metastatic line SN12PM6 was established in culture from a lung metastasis and SN12PM6-resistant cells were selected in vitro for resistance to the antiproliferative effects of IFN-alpha or IFN-beta. IFN-alpha and IFN-beta, but not IFN-gamma, down-regulated the expression of bFGF at the mRNA and protein levels by a mechanism independent of their antiproliferative effects. Down-regulation of bFGF required a long exposure (> 4 days) of cells to low concentrations (> 10 units/ml) of IFN-alpha or IFN-beta. The withdrawal of IFN-alpha or IFN-beta from the medium permitted SN12PM6-resistant cells to resume production of bFGF. The incubation of human bladder, prostate, colon, and breast carcinoma cells with noncytostatic concentrations of IFN-alpha or IFN-beta also produced down-regulation of bFGF production.
Resumo:
The earliest characterized events during induction of tubulogenesis in renal anlage include the condensation or compaction of metanephrogenic mesenchyme with the concurrent upregulation of WT1, the gene encoding the Wilms tumor transcriptional activator/suppressor. We report that basic fibroblast growth factor (FGF2) can mimic the early effects of an inductor tissue by promoting the condensation of mesenchyme and inhibiting the tissue degeneration associated with the absence of an inductor tissue. By in situ hybridization, FGF2 was also found to mediate the transcriptional activation of WT1 and of the hepatocyte growth factor receptor gene, c-met. Although FGF2 can induce these early events of renal tubulogenesis, it cannot promote the epithelial conversion associated with tubule formation in metanephrogenic mesenchyme. For this, an undefined factor(s) from pituitary extract in combination with FGF2 can cause tubule formation in uninduced mesenchyme. These findings support the concept that induction in kidney is a multiphasic process that is mediated by more than a single comprehensive inductive factor and that soluble molecules can mimic these inductive activities in isolated uninduced metanephrogenic mesenchyme.