73 resultados para Estrogen Receptor


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The composite transcription factor activating protein 1 (AP-1) integrates various mitogenic signals in a large number of cell types, and is therefore a major regulator of cell proliferation. In the normal human endometrium, proliferation and differentiation alternate in a cyclic fashion, with progesterone being largely implicated in the latter process. However, the effects of progesterone and the progesterone receptor (hPR) on AP-1 activity in the human endometrium are not known. To address this issue, HEC-1-B endometrial adenocarcinoma cells, which are devoid of hPR, were transfected with luciferase reporter constructs driven by two different AP-1-dependent promoters. Unexpectedly, cotransfection of hPR caused a marked induction of luciferase activity in the absence of ligand on both promoters. The magnitude of this induction was similar to that observed in response to the phorbol ester TPA. Addition of ligand reversed the stimulating effect of the unliganded hPR on AM activity in these cells. These effects were specific for hPR, and were not observed with either human estrogen receptor or human glucocorticoid receptor. Furthermore, they strictly depended on the presence of AP-1-responsive sequences within target promoters. Finally, the described effects of hPR on AP-1 activity were shown to be cell-type specific, because they could not be demonstrated in SKUT-1-B, JEG-3, and COS-7 cells. To our knowledge this is the first report of an unliganded steroid receptor stimulating AP-1 activity. This effect and its reversal in the presence of ligand suggest a novel mechanism, through which hPR can act as a key regulator of both proliferation and differentiation in the human endometrium.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The androgen receptor (AR) is a member of the steroid receptor superfamily that plays an important role in male sexual differentiation and prostate cell proliferation. Mutations or abnormal expression of AR in prostate cancer can play a key role in the process that changes prostate cancer from androgen-dependent to an androgen-independent stage. Using a yeast two-hybrid system, we were able to isolate a ligand-dependent AR-associated protein (ARA70), which functions as an activator to enhance AR transcriptional activity 10-fold in the presence of 10(-10) M dihydrotestosterone or 10(-9) M testosterone, but not 10(-6) M hydroxyflutamide in human prostate cancer DU145 cells. Our data further indicated that ARA70 Will only slightly induce the transcriptional activity of other steroid receptors such as estrogen receptor, glucocorticoid receptor, and progesterone receptor in DU145 cells. Together, these data suggest that AR may need a specific coactivator(s) such as ARA70 for optimal androgen activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Elements responsible for dexamethasone responsiveness of CYP3A23, a major glucocorticoid-inducible member of the CYP3A gene family, have been identified. DNase I footprint analysis of the proximal promoter region revealed three protected sites (sites A, B, and C) within the sequence defined by -167 to -60. Mutational analysis demonstrated that both sites B and C were necessary for maximum glucocorticoid responsiveness and functioned in a cooperative manner. Interestingly, neither site contained a glucocorticoid responsive element. Embedded in site C was an imperfect direct repeat (5'-AACTCAAAGGAGGTCA-3'), showing homology to an AGGTCA steroid receptor motif, typically recognized by the estrogen receptor family, while site B contained an ATGAACT direct repeat; these core sequences were designated dexamethasone response elements 1 and 2 (DexRE-1 and -2), respectively. Neither element has previously been associated with a glucocorticoid-activated transcriptional response. Conversion of the DexRE-1 to either a perfect thyroid hormone or vitamin D3 responsive element further enhanced induction by dexamethasone. Gel-shift analysis demonstrated that glucocorticoid receptor did not associate with either DexRE-1 or -2; hence, glucocorticoid receptor does not directly mediate glucocorticoid induction of CYP3A23. These unusual features suggest an alternate pathway through which glucocorticoids exert their effects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The estrogen receptor (ER), a 66-kDa protein that mediates the actions of estrogens in estrogen-responsive tissues, is a member of a large superfamily of nuclear hormone receptors that function as ligand-activated transcription factors. ER shares a conserved structural and functional organization with other members of this superfamily, including two transcriptional activation functions (AFs), one located in its amino-terminal region (AF-1) and the second located in its carboxyl-terminal, ligand-binding region (AF-2). In most promoter contexts, synergism between AF-1 and AF-2 is required for full ER activity. In these studies, we demonstrate a functional interaction of the two AF-containing regions of ER, when expressed as separate polypeptides in mammalian cells, in response to 17 beta-estradiol (E2) and antiestrogen binding. The interaction was transcriptionally productive only in response to E2, and was eliminated by point or deletion mutations that destroy AF-1 or AF-2 activity or E2 binding. Our results suggest a definitive mechanistic role for E2 in the activity of ER--namely, to alter receptor conformation to promote an association of the amino- and carboxyl-terminal regions, leading to transcriptional synergism between AF-1 and AF-2. The productive re assembly of two portions of ER expressed in cells as separate polypeptides demonstrates the evolutionarily conserved modular structural and functional organization of the nuclear hormone receptors. The ligand-dependent interaction of the two AF-containing regions of ER allows for the assembly of a complete activation function from two distinct regions within the same protein, providing a mechanism for hormonally regulated transcription.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In search of proteins which interact with activated steroid hormone receptors, we screened a human liver lambda gt11 expression library with the glucocorticoid receptor. We identified and cloned a cDNA sequence of 1322 bp that encodes a protein of 274 aa. This protein consists predominantly of hydrophilic amino acids and contains a putative bipartite nuclear localization signal. The in vitro translated receptor-associating protein runs in SDS/polyacrylamide gels with an apparent molecular mass of 46 kDa. By use of the bacterially expressed fusion protein with glutathione S-transferase we have found that interaction is not limited to the glucocorticoid receptor but included other nuclear receptors--most notably, the estrogen and thyroid receptors. Binding also occurs with the glucocorticoid receptor complexed with the antiglucocorticoid RU 38486, with the estrogen receptor complexed with the antiestrogen 4-hydroxytamoxifen or ICI 164,384, and even with receptors not complexed with ligand. Association with steroid hormone receptors depends on prior receptor activation--i.e., release from heat shock proteins. The sequence identified here appears to be a general partner protein for nuclear hormone receptors, with the gene being expressed in a variety of mammalian tissues.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have been studying the role and mechanism of estrogen action in the survival and differentiation of neurons in the basal forebrain and its targets in the cerebral cortex, hippocampus, and olfactory bulb. Previous work has shown that estrogen-target neurons in these regions widely coexpress the mRNAs for the neurotrophin ligands and their receptors, suggesting a potential substrate for estrogen-neurotrophin interactions. Subsequent work indicated that estrogen regulates the expression of two neurotrophin receptor mRNAs in prototypic peripheral neural targets of nerve growth factor. We report herein that the gene encoding the neurotophin brain-derived neurotrophic factor (BDNF) contains a sequence similar to the canonical estrogen response element found in estrogen-target genes. Gel shift and DNA footprinting assays indicate that estrogen receptor-ligand complexes bind to this sequence in the BDNF gene. In vivo, BDNF mRNA was rapidly up-regulated in the cerebral cortex and the olfactory bulb of ovariectomized animals exposed to estrogen. These data suggest that estrogen may regulate BDNF transcription, supporting our hypothesis that estrogen may be in a position to influence neurotrophin-mediated cell functioning, by increasing the availability of specific neurotrophins in forebrain neurons.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nuclear hormone receptors are transcription factors that require multiple protein-protein interactions to regulate the expression of their target genes. Using the yeast two-hybrid system, we identified a protein, thyroid hormone receptor uncoupling protein (TRUP), that specifically interacts with a region of the human thyroid hormone receptor (TR) consisting of the hinge region and the N-terminal portion of the ligand binding domain in a hormone-independent manner. Interestingly, TRUP inhibits transactivation by TR and the retinoic acid receptor but has no effect on the estrogen receptor or the retinoid X receptor in mammalian cells. We also demonstrate that TRUP exerts its action on TR and retinoic acid receptor by interfering with their abilities to interact with their DNA. TRUP represents a type of regulatory protein that modulates the transcriptional activity of a subclass of the nuclear hormone receptor superfamily by preventing interaction with their genomic response elements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of estrogens from C19 steroids is catalyzed by aromatase cytochrome P450 (P450arom), the product of the cyp19 gene. The actions of estrogen include dimorphic anatomical, functional, and behavioral effects on the development of both males and females, considerations that prompted us to examine the consequences of deficiency of aromatase activity in mice. Mice lacking a functional aromatase enzyme (ArKO) were generated by targeted disruption of the cyp19 gene. Male and female ArKO mice were born with the expected Mendelian frequency from F1 parents and grew to adulthood. Female ArKO mice at 9 weeks of age displayed underdeveloped external genitalia and uteri. Ovaries contained numerous follicles with abundant granulosa cells and evidence of antrum formation that appeared arrested before ovulation. No corpora lutea were present. Additionally the stroma were hyperplastic with structures that appeared to be atretic follicles. Development of the mammary glands approximated that of a prepubertal female. Examination of male ArKO mice of the same age revealed essentially normal internal anatomy but with enlargement of the male accessory sex glands because of increased content of secreted material. The testes appeared normal. Male ArKO mice are capable of breeding and produce litters of approximately average size. Whereas serum estradiol levels were at the limit of detection, testosterone levels were elevated, as were the levels of follicle-stimulating hormone and luteinizing hormone. The phenotype of these animals differs markedly from that of the previously reported ERKO mice, in which the estrogen receptor α is deleted by targeted disruption.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of insulin on the mammalian target of rapamycin, mTOR, were investigated in 3T3-L1 adipocytes. mTOR protein kinase activity was measured in immune complex assays with recombinant PHAS-I as substrate. Insulin-stimulated kinase activity was clearly observed when immunoprecipitations were conducted with the mTOR antibody, mTAb2. Insulin also increased by severalfold the 32P content of mTOR that was determined after purifying the protein from 32P-labeled adipocytes with rapamycin⋅FKBP12 agarose beads. Insulin affected neither the amount of mTOR immunoprecipitated nor the amount of mTOR detected by immunoblotting with mTAb2. However, the hormone markedly decreased the reactivity of mTOR with mTAb1, an antibody that activates the mTOR protein kinase. The effects of insulin on increasing mTOR protein kinase activity and on decreasing mTAb1 reactivity were abolished by incubating mTOR with protein phosphatase 1. Interestingly, the epitope for mTAb1 is located near the COOH terminus of mTOR in a 20-amino acid region that includes consensus sites for phosphorylation by protein kinase B (PKB). Experiments were performed in MER-Akt cells to investigate the role of PKB in controlling mTOR. These cells express a PKB-mutant estrogen receptor fusion protein that is activated when the cells are exposed to 4-hydroxytamoxifen. Activating PKB with 4-hydroxytamoxifen mimicked insulin by decreasing mTOR reactivity with mTAb1 and by increasing the PHAS-I kinase activity of mTOR. Our findings support the conclusion that insulin activates mTOR by promoting phosphorylation of the protein via a signaling pathway that contains PKB.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cell proliferation is regulated by the induction of growth promoting genes and the suppression of growth inhibitory genes. Malignant growth can result from the altered balance of expression of these genes in favor of cell proliferation. Induction of the transcription factor, c-Myc, promotes cell proliferation and transformation by activating growth promoting genes, including the ODC and cdc25A genes. We show that c-Myc transcriptionally represses the expression of a growth arrest gene, gas1. A conserved Myc structure, Myc box 2, is required for repression of gas1, and for Myc induction of proliferation and transformation, but not for activation of ODC. Activation of a Myc-estrogen receptor fusion protein by 4-hydroxytamoxifen was sufficient to repress gas1 gene transcription. These findings suggest that transcriptional repression of growth arrest genes, including gas1, is one step in promotion of cell growth by Myc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The efficient introduction of somatic mutations in a given gene, at a given time, in a specific cell type will facilitate studies of gene function and the generation of animal models for human diseases. We have shown previously that conditional recombination–excision between two loxP sites can be achieved in mice by using the Cre recombinase fused to a mutated ligand binding domain of the human estrogen receptor (Cre-ERT), which binds tamoxifen but not estrogens. DNA excision was induced in a number of tissues after administration of tamoxifen to transgenic mice expressing Cre-ERT under the control of the cytomegalovirus promoter. However, the efficiency of excision varied between tissues, and the highest level (≈40%) was obtained in the skin. To determine the efficiency of excision mediated by Cre-ERT in a given cell type, we have now crossed Cre-ERT-expressing mice with reporter mice in which expression of Escherichia coli β-galactosidase can be induced through Cre-mediated recombination. The efficiency and kinetics of this recombination were analyzed at the cellular level in the epidermis of 6- to 8-week-old double transgenic mice. We show that site-specific excision occurred within a few days of tamoxifen treatment in essentially all epidermis cells expressing Cre-ERT. These results indicate that cell-specific expression of Cre-ERT in transgenic mice can be used for efficient tamoxifen-dependent, Cre-mediated recombination at loci containing loxP sites to generate site-specific somatic mutations in a spatio-temporally controlled manner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sodium/iodide symporter (NIS) stimulates iodide uptake in normal lactating breast, but is not known to be active in nonlactating breast or breast cancer. We studied NIS gene regulation and iodide uptake in MCF-7 cells, an estrogen receptor (ER)-positive human breast cancer cell line. All-trans retinoic acid (tRA) treatment stimulated iodide uptake in a time- and dose-dependent fashion up to ≈9.4-fold above baseline. Stimulation with selective retinoid compounds indicated that the induction of iodide uptake was mediated by retinoic acid receptor. Treatment with tRA markedly stimulated NIS mRNA and immunoreactive protein (≈68 kDa). tRA stimulated NIS gene transcription ≈4-fold, as shown by nuclear run-on assay. No induction of iodide uptake was observed with RA treatment of an ER-negative human breast cancer cell line, MDA-MB 231, or a normal human breast cell line, MCF-12A. The iodide efflux rate of tRA-treated MCF-7 cells was slow (t1/2 = 24 min), compared with that in FRTL-5 thyroid cells (t1/2 = 3.9 min), favoring iodide retention in MCF-7 cells. An in vitro clonogenic assay demonstrated selective cytotoxicity with 131I after tRA stimulation of MCF-7 cells. tRA up-regulates NIS gene expression and iodide uptake in an ER-positive breast cancer cell line. Stimulation of radioiodide uptake after systemic retinoid treatment may be useful for diagnosis and treatment of some differentiated breast cancers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have developed a universally applicable system for conditional gene expression in embryonic stem (ES) cells that relies on tamoxifen-dependent Cre recombinase-loxP site-mediated recombination and bicistronic gene-trap expression vectors that allow transgene expression from endogenous cellular promoters. Two vectors were introduced into the genome of recipient ES cells, successively: (i) a bicistronic gene-trap vector encoding the β-galactosidase/neoR fusion protein and the Cre-ERT2 (Cre recombinase fused to a mutated ligand-binding domain of the human estrogen receptor) and (ii) a bicistronic gene-trap vector encoding the hygroR protein and the human alkaline phosphatase (hAP), the expression of which is prevented by tandemly repeated stop-of-transcription sequences flanked by loxP sites. In selected clones, hAP expression was shown to be regulated accurately by 4′hydroxy-tamoxifen. Strict hormone-dependent expression of hAP was achieved (i) in vitro in undifferentiated ES cells and embryoid bodies, (ii) in vivo in virtually all the tissues of the 10-day-old chimeric fetus (after injection of 4′hydroxy-tamoxifen to foster mothers), and (iii) ex vivo in primary embryonic fibroblasts isolated from chimeric fetuses. Therefore, this approach can be applied to drive conditional expression of virtually any transgene in a large variety of cell types, both in vitro and in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cyclin-dependent kinase inhibitor p21(WAF1/CIP1) inhibits proliferation both in vitro and in vivo, and overexpression of p21 in normal and tumor cell lines results in cell cycle arrest. In contrast, ectopic expression of Myc alleviates G1 cell cycle arrest. Recent studies showed that Myc can repress p21 transcription, thereby overriding a p21-mediated cell cycle checkpoint. We found that activation of a Myc-estrogen receptor fusion protein by 4-hydroxytamoxifen in mouse cells resulted in suppression of endogenous p21 transcription. This effect was observed in the absence of de novo protein synthesis and was independent of histone deacetylase activity. In transient transfection studies, Myc effectively repressed p21 promoter constructs containing only 119 bp of sequence upstream of the transcription start site. This region contains multiple Sp1-binding sites and a potential initiator element, but no canonical Myc DNA-binding sites. Deletion of the potential initiator element does not affect repression of the p21 promoter by c-Myc. Coimmunoprecipitation and glutathione S-transferase pull-down experiments demonstrate that c-Myc may form complexes with Sp1/Sp3. We found that the central region of c-Myc interacts with the zinc finger domain of Sp1. Because Sp1 is required for p21 transcription, it is possible that Myc may down-regulate p21 transcription, at least in part, by sequestering Sp1. Repression of the p21 promoter may contribute to the ability of c-Myc to promote cell proliferation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With assays of hormone-sensitive behaviors, it is possible to demonstrate both direct and indirect actions of genes on mammalian social behaviors. Direct effects of estrogen receptor gene expression and progesterone receptor gene expression figure prominently in well analyzed neuroendocrine mechanisms for sex behavior, operating through a neural circuit that has been delineated. Indirect effects, notably the consequences of sexual differentiation, display complex dependencies. In a human condition, Kallmann syndrome, the data show a clear, indirect genetic influence on an important human social behavior, in which damage at chromosome Xp-22.3 works through at least six discrete steps to affect libido. Altogether, simplistic extrapolations from lower animals, especially during brief summaries for nonscientists, do not appear justified as we discover and conceptualize genetic influences on mammalian brain and behavior.