114 resultados para Embryonic vesicle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although many proteins essential for regulated neurotransmitter and peptide hormone secretion have been identified, little is understood about their precise roles at specific stages of the multistep pathway of exocytosis. To study the function of CAPS (Ca2+-dependent activator protein for secretion), a protein required for Ca2+-dependent exocytosis of dense-core vesicles, secretory responses in single rat melanotrophs were monitored by patch-clamp membrane capacitance measurements. Flash photolysis of caged Ca2+ elicited biphasic capacitance increases consisting of rapid and slow components with distinct Ca2+ dependencies. A threshold of ≈10 μM Ca2+ was required to trigger the slow component, while the rapid capacitance increase was recorded already at a intracellular Ca2+ activity < 10 μM. Both kinetic membrane capacitance components were abolished by botulinum neurotoxin B or E treatment, suggesting involvement of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-dependent vesicle fusion. The rapid but not the slow component was inhibited by CAPS antibody. These results were further clarified by immunocytochemical studies that revealed that CAPS was present on only a subset of dense-core vesicles. Overall, the results indicate that dense-core vesicle exocytosis in melanotrophs occurs by two parallel pathways. The faster pathway exhibits high sensitivity to Ca2+ and requires the presence of CAPS, which appears to act at a late stage in the secretory pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P210 Bcr-Abl is an activated tyrosine kinase oncogene encoded by the Philadelphia chromosome associated with human chronic myelogenous leukemia (CML). The disease represents a clonal disorder arising in the pluripotent hematopoietic stem cell. During the chronic phase, patients present with a dramatic expansion of myeloid cells and a mild anemia. Retroviral gene transfer and transgenic expression in rodents have demonstrated the ability of Bcr-Abl to induce various types of leukemia. However, study of human CML or rodent models has not determined the direct and immediate effects of Bcr-Abl on hematopoietic cells from those requiring secondary genetic or epigenetic changes selected during the pathogenic process. We utilized tetracycline-regulated expression of Bcr-Abl from a promoter engineered for robust expression in primitive stem cells through multilineage blood cell development in combination with the in vitro differentiation of embryonal stem cells into hematopoietic elements. Our results demonstrate that Bcr-Abl expression alone is sufficient to increase the number of multipotent and myeloid lineage committed progenitors in a dose-dependent manner while suppressing the development of committed erythroid progenitors. These effects are reversible upon extinguishing Bcr-Abl expression. These findings are consistent with Bcr-Abl being the sole genetic change needed for the establishment of the chronic phase of CML and provide a powerful system for the analysis of any genetic change that alters cell growth and lineage choices of the hematopoietic stem cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mice deficient in the Flk-1 receptor tyrosine kinase are known to die in utero because of defective vascular and hematopoietic development. Here, we show that flk-1−/− embryonic stem cells are nevertheless able to differentiate into hematopoietic and endothelial cells in vitro, although they give rise to a greatly reduced number of blast colonies, a measure of hemangioblast potential. Furthermore, normal numbers of hematopoietic progenitors are found in 7.5-day postcoitum flk-1−/− embryos, even though 8.5-day postcoitum flk-1−/− embryos are known to be deficient in such cells. Our results suggest that hematopoietic/endothelial progenitors arise independently of Flk-1, but that their subsequent migration and expansion require a Flk-1-mediated signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parkinson's disease is a common neurodegenerative disorder in which familial-linked genes have provided novel insights into the pathogenesis of this disorder. Mutations in Parkin, a ring-finger-containing protein of unknown function, are implicated in the pathogenesis of autosomal recessive familial Parkinson's disease. Here, we show that Parkin binds to the E2 ubiquitin-conjugating human enzyme 8 (UbcH8) through its C-terminal ring-finger. Parkin has ubiquitin–protein ligase activity in the presence of UbcH8. Parkin also ubiquitinates itself and promotes its own degradation. We also identify and show that the synaptic vesicle-associated protein, CDCrel-1, interacts with Parkin through its ring-finger domains. Furthermore, Parkin ubiquitinates and promotes the degradation of CDCrel-1. Familial-linked mutations disrupt the ubiquitin–protein ligase function of Parkin and impair Parkin and CDCrel-1 degradation. These results suggest that Parkin functions as an E3 ubiquitin–protein ligase through its ring domains and that it may control protein levels via ubiquitination. The loss of Parkin's ubiquitin–protein ligase function in familial-linked mutations suggests that this may be the cause of familial autosomal recessive Parkinson's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertebrate eye development begins at the gastrula stage, when a region known as the eye field acquires the capacity to generate retina and lens. Optx2, a homeobox gene of the sine oculis-Six family, is selectively expressed in this early eye field and later in the lens placode and optic vesicle. The distal and ventral portion of the optic vesicle are fated to become the retina and optic nerve, whereas the dorsal portion eventually loses its neural characteristics and activates the synthesis of melanin, forming the retinal pigment epithelium. Optx2 expression is turned off in the future pigment epithelium but remains expressed in the proliferating neuroblasts and differentiating cells of the neural retina. When an Optx2-expressing plasmid is transfected into embryonic or mature chicken pigment epithelial cells, these cells adopt a neuronal morphology and express markers characteristic of developing neural retina and photoreceptors. One explanation of these results is that Optx2 functions as a determinant of retinal precursors and that it has induced the transdifferentiation of pigment epithelium into retinal neurons and photoreceptors. We also have isolated optix, a Drosophila gene that is the closest insect homologue of Optx2 and Six3. Optix is expressed during early development of the fly head and eye primordia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mouse has become an increasingly important organism for modeling human diseases and for determining gene function in a mammalian context. Unfortunately, transposon-tagged mutagenesis, one of the most valuable tools for functional genomics, still is not available in this organism. On the other hand, it has long been speculated that members of the Tc1/mariner-like elements may be less dependent on host factors and, hence, can be introduced into heterologous organisms. However, this prediction has not been realized in mice. We report here the chromosomal transposition of the Sleeping Beauty (SB) element in mouse embryonic stem cells, providing evidence that it can be used as an in vivo mutagen in mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Germline defects in the tuberous sclerosis 2 (TSC2) tumor suppressor gene predispose humans and rats to benign and malignant lesions in a variety of tissues. The brain is among the most profoundly affected organs in tuberous sclerosis (TSC) patients and is the site of development of the cortical tubers for which the hereditary syndrome is named. A spontaneous germline inactivation of the Tsc2 locus has been described in an animal model, the Eker rat. We report that the homozygous state of this mutation (Tsc2Ek/Ek) was lethal in mid-gestation (the equivalent of mouse E9.5–E13.5), when Tsc2 mRNA was highly expressed in embryonic neuroepithelium. During this period homozygous mutant Eker embryos lacking functional Tsc2 gene product, tuberin, displayed dysraphia and papillary overgrowth of the neuroepithelium, indicating that loss of tuberin disrupted the normal development of this tissue. Interestingly, there was significant intraspecies variability in the penetrance of cranial abnormalities in mutant embryos: the Long–Evans strain Tsc2Ek/Ek embryos displayed these defects whereas the Fisher 344 homozygous mutant embryos had normal-appearing neuroepithelium. Taken together, our data indicate that the Tsc2 gene participates in normal brain development and suggest the inactivation of this gene may have similar functional consequences in both mature and embryonic brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylation of cytosines in the dinucleotide CpG has been shown to suppress transcription of a number of tissue-specific genes, yet the precise mechanism is not fully understood. The vertebrate globin genes were among the first examples in which an inverse correlation was shown between CpG methylation and transcription. We studied the methylation pattern of the 235-bp ρ-globin gene promoter in genomic DNA from primary chicken erythroid cells using the sodium bisulfite conversion technique and found all CpGs in the promoter to be methylated in erythroid cells from adult chickens in which the ρ-globin gene is silent but unmethylated in 5-day (primitive) embryonic red cells in which the gene is transcribed. To elucidate further the mechanism of methylation-induced silencing, an expression construct consisting of 235 bp of 5′ promoter sequence of the ρ-globin gene along with a strong 5′ erythroid enhancer driving a chloramphenicol acetyltransferase reporter gene, ρ-CAT, was transfected into primary avian erythroid cells derived from 5-day embryos. Methylation of just the 235-bp ρ-globin gene promoter fragment at every CpG resulted in a 20- to 30-fold inhibition of transcription, and this effect was not overridden by the presence of potent erythroid-specific enhancers. The ability of the 235-bp ρ-globin gene promoter to bind to a DNA Methyl Cytosine binding Protein Complex (MeCPC) was tested in electrophoretic mobility shift assays utilizing primary avian erythroid cell nuclear extract. The results were that fully methylated but not unmethylated 235-bp ρ-globin gene promoter fragment could compete efficiently for MeCPC binding. These results are a direct demonstration that site-specific methylation of a globin gene promoter at the exact CpGs that are methylated in vivo can silence transcription in homologous primary erythroid cells. Further, these data implicate binding of MeCPC to the promoter in the mechanism of silencing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unique chromosomal translocation involving the genes PAX3 and FKHR is characteristic of most human alveolar rhabdomyosarcomas. The resultant chimeric protein fuses the PAX3 DNA-binding domains to the transactivation domain of FKHR, suggesting that PAX3-FKHR exerts its role in alveolar rhabdomyosarcomas through dysregulation of PAX3-specific target genes. Here, we have produced transgenic mice in which PAX3-FKHR expression was driven by mouse Pax3 promoter/enhancer sequences. Five independent lines expressed PAX3-FKHR in the dorsal neural tube and lateral dermomyotome. Each line exhibited phenotypes that correlated with PAX3-FKHR expression levels and predominantly involved pigmentary disturbances of the abdomen, hindpaws, and tail, with additional neurological related alterations. Phenotypic severity could be increased by reducing Pax3 levels through matings with Pax3-defective Splotch mice, and interference between PAX3 and PAX3-FKHR was apparent in transcription reporter assays. These data suggest that the tumor-associated PAX3-FKHR fusion protein interferes with normal Pax3 developmental functions as a prelude to transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional inactivation of the tumor susceptibility gene tsg101 in NIH 3T3 fibroblasts results in cellular transformation and the ability to form metastatic tumors in nude mice. The N-terminal region of tsg101 protein is structurally similar to the catalytic domain of ubiquitin-conjugating enzymes, suggesting a potential role of tsg101 in ubiquitin-mediated protein degradation. The C-terminal domain of TSG101 can function as a repressor of transcription. To investigate the physiological function of tsg101, we generated a null mutation of the mouse gene by gene targeting. Homozygous tsg101−/− embryos fail to develop past day 6.5 of embryogenesis (E6.5), are reduced in size, and do not form mesoderm. Mutant embryos show a decrease in cellular proliferation in vivo and in vitro but no increase in apoptosis. Although levels of p53 transcripts were not affected in tsg101−/− embryos, p53 protein accumulated dramatically, implying altered posttranscriptional control of p53. In addition, transcription of the p53 effector, cyclin-dependent kinase inhibitor p21WAF-1/CIP-1, was increased 5- to 10-fold, whereas activation of MDM2 transcription secondary to p53 elevation was not observed. Introduction of a p53 null mutation into tsg101−/− embryos rescued the gastrulation defect and prolonged survival until E8.5. These results demonstrate that tsg101 is essential for the proliferative burst before the onset of gastrulation and establish a functional connection between tsg101 and the p53 pathway in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a universally applicable system for conditional gene expression in embryonic stem (ES) cells that relies on tamoxifen-dependent Cre recombinase-loxP site-mediated recombination and bicistronic gene-trap expression vectors that allow transgene expression from endogenous cellular promoters. Two vectors were introduced into the genome of recipient ES cells, successively: (i) a bicistronic gene-trap vector encoding the β-galactosidase/neoR fusion protein and the Cre-ERT2 (Cre recombinase fused to a mutated ligand-binding domain of the human estrogen receptor) and (ii) a bicistronic gene-trap vector encoding the hygroR protein and the human alkaline phosphatase (hAP), the expression of which is prevented by tandemly repeated stop-of-transcription sequences flanked by loxP sites. In selected clones, hAP expression was shown to be regulated accurately by 4′hydroxy-tamoxifen. Strict hormone-dependent expression of hAP was achieved (i) in vitro in undifferentiated ES cells and embryoid bodies, (ii) in vivo in virtually all the tissues of the 10-day-old chimeric fetus (after injection of 4′hydroxy-tamoxifen to foster mothers), and (iii) ex vivo in primary embryonic fibroblasts isolated from chimeric fetuses. Therefore, this approach can be applied to drive conditional expression of virtually any transgene in a large variety of cell types, both in vitro and in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was made of glycine (Gly) and γ-aminobutyric acid (GABA) receptors expressed in Xenopus oocytes injected with rat mRNAs isolated from the encephalon, midbrain, and brainstem of 18-day-old rat embryos. In oocytes injected with encephalon, midbrain, or brainstem mRNAs, the Gly-current amplitudes (membrane current elicited by Gly; 1 mM Gly) were respectively 115 ± 35, 346 ± 28, and 389 ± 22 nA, whereas the GABA-currents (1 mM GABA) were all ≤40 nA. Moreover, the Gly-currents desensitized faster in oocytes injected with encephalon or brainstem mRNAs. The EC50 for Gly was 611 ± 77 μM for encephalon, 661 ± 28 μM for midbrain, and 506 ± 18 μM for brainstem mRNA-injected oocytes, and the corresponding Hill coefficients were all ≈2. Strychnine inhibited all of the Gly-currents, with an IC50 of 56 ± 3 nM for encephalon, 97 ± 4 nM for midbrain, and 72 ± 4 nM for brainstem mRNAs. During repetitive Gly applications, the Gly-currents were potentiated by 1.6-fold for encephalon, 2.1-fold for midbrain, and 1.3-fold for brainstem RNA-injected oocytes. Raising the extracellular Ca2+ concentration significantly increased the Gly-currents in oocytes injected with midbrain and brainstem mRNAs. Reverse transcription–PCR studies showed differences in the Gly receptor (GlyR) α-subunits expressed, whereas the β-subunit was present in all three types of mRNA. These results indicate differential expression of GlyR mRNAs in the brain areas examined, and these mRNAs lead to the expression of GlyRs that have different properties. The modulation of GlyRs by Ca2+ could play important functions during brain development.