250 resultados para ENCODING GENE


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plastoquinone and tocopherols are the two major quinone compounds in higher plant chloroplasts and are synthesized by a common pathway. In previous studies we characterized two loci in Arabidopsis defining key steps of this biosynthetic pathway. Mutation of the PDS1 locus disrupts the activity of p-hydroxyphenylpyruvate dioxygenase (HPPDase), the first committed step in the synthesis of both plastoquinone and tocopherols in plants. Although plants homozygous for the pds1 mutation could be rescued by growth in the presence of homogentisic acid, the product of HPPDase, we were unable to determine if the mutation directly or indirectly disrupted HPPDase activity. This paper reports the isolation of a cDNA, pHPPD, encoding Arabidopsis HPPDase and its functional characterization by expression in both plants and Escherichia coli. pHPPD encodes a 50-kD polypeptide with homology to previously identified HPPDases, including 37 highly conserved amino acid residues clustered in the carboxyl region of the protein. Expression of pHPPD in E. coli catalyzes the accumulation of homogentisic acid, indicating that it encodes a functional HPPDase enzyme. Mapping of pHPPD and co-segregation analysis of the pds1 mutation and the HPPD gene indicate tight linkage. Constitutive expression of pHPPD in a pds1 mutant background complements this mutation. Finally, comparison of the HPPD genomic sequences from wild type and pds1 identified a 17-bp deletion in the pds1 allele that results in deletion of the carboxyterminal 26 amino acids of the HPPDase protein. Together, these data conclusively demonstrate that pds1 is a mutation in the HPPDase structural gene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hydroperoxide lyase (HPL) cleaves lipid hydroperoxides to produce volatile flavor molecules and also potential signal molecules. We have characterized a gene from Arabidopsis that is homologous to a recently cloned HPL from green pepper (Capsicum annuum). The deduced protein sequence indicates that this gene encodes a cytochrome P-450 with a structure similar to that of allene oxide synthase. The gene was cloned into an expression vector and expressed in Escherichia coli to demonstrate HPL activity. Significant HPL activity was evident when 13S-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid was used as the substrate, whereas activity with 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid was approximately 10-fold lower. Analysis of headspace volatiles by gas chromatography-mass spectrometry, after addition of the substrate to E. coli extracts expressing the protein, confirmed enzyme-activity data, since cis-3-hexenal was produced by the enzymatic activity of the encoded protein, whereas hexanal production was limited. Molecular characterization of this gene indicates that it is expressed at high levels in floral tissue and is wound inducible but, unlike allene oxide synthase, it is not induced by treatment with methyl jasmonate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The C4 enzyme pyruvate orthophosphate dikinase is encoded by a single gene, Pdk, in the C4 plant Flaveria trinervia. This gene also encodes enzyme isoforms located in the chloroplast and in the cytosol that do not have a function in C4 photosynthesis. Our goal is to identify cis-acting DNA sequences that regulate the expression of the gene that is active in the C4 cycle. We fused 1.5 kb of a 5′ flanking region from the Pdk gene, including the entire 5′ untranslated region, to the uidA reporter gene and stably transformed the closely related C4 species Flaveria bidentis. β-Glucuronidase (GUS) activity was detected at high levels in leaf mesophyll cells. GUS activity was detected at lower levels in bundle-sheath cells and stems and at very low levels in roots. This lower-level GUS expression was similar to the distribution of mRNA encoding the nonphotosynthetic form of the enzyme. We conclude that cis-acting DNA sequences controlling the expression of the C4 form in mesophyll cells and the chloroplast form in other cells and organs are co-located within the same 5′ region of the Pdk gene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the isolation of a Chlamydomonas reinhardtii cDNA that encodes the β-subunit of tryptophan synthase (TSB). This cDNA was cloned by functional complementation of a trp-operon-deleted strain of Escherichia coli. Hybridization analysis indicated that the gene exists in a single copy. The predicted amino acid sequence showed the greatest identity to TSB polypeptides from other photosynthetic organisms. With the goal of identifying mutations in the gene encoding this enzyme, we isolated 11 recessive and 1 dominant single-gene mutation that conferred resistance to 5-fluoroindole. These mutations fell into three complementation groups, MAA2, MAA7, and TAR1. In vitro assays showed that mutations at each of these loci affected TSB activity. Restriction fragment-length polymorphism analysis suggested that MAA7 encodes TSB. MAA2 and TAR1 may act to regulate the activity of MAA7 or its protein product.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The gene encoding type II DNA topoisomerase from the kinetoplastid hemoflagellated protozoan parasite Leishmania donovani (LdTOP2) was isolated from a genomic DNA library of this parasite. DNA sequence analysis revealed an ORF of 3711 bp encoding a putative protein of 1236 amino acids with no introns. The deduced amino acid sequence of LdTOP2 showed strong homologies to TOP2 sequences from other kinetoplastids, namely Crithidia and Trypanosoma spp. with estimated identities of 86 and 68%, respectively. LdTOP2 shares a much lower identity of 32% with its human homologue. LdTOP2 is located as a single copy on a chromosome in the 0.7 Mb region in the L.donovani genome and is expressed as a 5 kb transcript. 5′-Mapping studies indicate that the LdTOP2 gene transcript is matured post-transcriptionally with the trans-splicing of the mini-exon occurring at –639 from the predicted initiation site. Antiserum raised in rabbit against glutathione S-transferase fusion protein containing the major catalytic portion of the recombinant L.donovani topoisomerase II protein could detect a band on western blots at ∼132 kDa, the expected size of the entire protein. Use of the same antiserum for immunolocalisation analysis led to the identification of nuclear, as well as kinetoplast, antigens for L.donovani topoisomerase II. The in vitro biochemical properties of the full-length recombinant LdTOP2 when overexpressed in E.coli were similar to the Mg(II) and ATP-dependent activity found in cell extracts of L.donovani.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Changes in DNA superhelicity during DNA replication are mediated primarily by the activities of DNA helicases and topoisomerases. If these activities are defective, the progression of the replication fork can be hindered or blocked, which can lead to double-strand breaks, elevated recombination in regions of repeated DNA, and genome instability. Hereditary diseases like Werner's and Bloom's Syndromes are caused by defects in DNA helicases, and these diseases are associated with genome instability and carcinogenesis in humans. Here we report a Saccharomyces cerevisiae gene, MGS1 (Maintenance of Genome Stability 1), which encodes a protein belonging to the AAA+ class of ATPases, and whose central region is similar to Escherichia coli RuvB, a Holliday junction branch migration motor protein. The Mgs1 orthologues are highly conserved in prokaryotes and eukaryotes. The Mgs1 protein possesses DNA-dependent ATPase and single-strand DNA annealing activities. An mgs1 deletion mutant has an elevated rate of mitotic recombination, which causes genome instability. The mgs1 mutation is synergistic with a mutation in top3 (encoding topoisomerase III), and the double mutant exhibits severe growth defects and markedly increased genome instability. In contrast to the mgs1 mutation, a mutation in the sgs1 gene encoding a DNA helicase homologous to the Werner and Bloom helicases suppresses both the growth defect and the increased genome instability of the top3 mutant. Therefore, evolutionarily conserved Mgs1 may play a role together with RecQ family helicases and DNA topoisomerases in maintaining proper DNA topology, which is essential for genome stability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ubiquitin-conjugating enzymes (E2 or Ubc) constitute a family of conserved proteins that play a key role in ubiquitin-dependent degradation of proteins in eukaryotes. We describe here a transgenic mouse strain where retrovirus integration into an Ubc gene, designated UbcM4, results in a recessive-lethal mutation. UbcM4 is the mouse homologue of the previously described human UbcH7 that is involved in the in vitro ubiquitination of several proteins including the tumor suppressor protein p53. The provirus is located in the first intron of the gene. When both alleles are mutated the level of steady-state mRNA is reduced by about 70%. About a third of homozygous mutant embryos die around day 11.5 of gestation. Embryos that survive that stage are growth retarded and die perinatally. The lethal phenotype is most likely caused by impairment of placenta development as this is the only organ that consistently showed pathological defects. The placental labyrinth is drastically reduced in size and vascularization is disturbed. The UbcM4 mouse mutant represents the first example in mammals of a mutation in a gene involved in ubiquitin conjugation. Its recessive-lethal phenotype demonstrates that the ubiquitin system plays an essential role during mouse development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human cytomegalovirus (CMV) replication begins with the expression of two regulatory proteins, IE1(491aa) and IE2(579aa), produced from differentially spliced transcripts under control of the ie1/ie2 promoter-enhancer. A deletion mutation removing all 406 IE1(491aa)-specific amino acids was engineered into the viral genome and this mutant (RC303 delta Acc) was propagated on an IE1(491aa)-expressing human fibroblast cell line (ihfie1.3). RC303 delta Acc failed to replicate on normal human fibroblasts at low multiplicities of infection (mois). At mois > 3 plaque-forming units per cell, virus replication and production of progeny were comparable to wild type. However, at mois between 0.01 and 1, mutant virus replicated slowly on normal fibroblasts, a pattern that suggested initiation of productive infection required multiple hits. Replication of RC303 delta Acc correlated with the ability to express IE2(579aa), consistent with a role for IE1(491aa) in positive autoregulation of the ie1/ie2 promoter-enhancer and with data suggesting that virion transactivators compensate for the lack of IE1(491aa) under high moi conditions. ie1-deficient CMV should be completely avirulent, suggesting its utility as a gene therapy vector for hematopoietic progenitors that are normal sites of CMV latency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The 1.4-kb downstream region from a nitrilase gene (nitA) of an actinomycete Rhodococcus rhodochrous J1, which is industrially in use, was found to be required for the isovaleronitrile-dependent induction of nitrilase synthesis in experiments using a Rhodococcus-Escherichia coli shuttle vector pK4 in a Rhodococcus strain. Sequence analysis of the 1.4-kb region revealed the existence of an open reading frame (nitR) of 957 bp, which would encode a protein with a molecular mass of 35,100. Deletion of the central and 3'-terminal portion of nitR resulted in the complete loss of nitrilase activity, demonstrating that nitR codes for a transcriptional positive regulator in nitA expression. The deduced amino acid sequence of nitR showed similarity to a positive regulator family including XylS from Pseudomonas putida and AraC from E. coli. By Northern blot analysis, the 1.4-kb transcripts for nitA were detected in R. rhodochrous J1 cells cultured in the presence of isovaleronitrile, but not those cultured in the absence of isovaleronitrile. The transcriptional start site for nitA was mapped to a C residue located 26 bp upstream of its translational start site. Deletion analysis to define the nitA promoter region suggested the possible participation of an inverted repeat sequence, centered on base pair -52, in induction of nitA transcription.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aquaporin family of membrane water transport proteins are expressed in diverse tissues, and in brain the predominant water channel protein is AQP4. Here we report the isolation and characterization of the human AQP4 cDNAs and genomic DNA. Two cDNAs were isolated corresponding to the two initiating methionines (M1 in a 323-aa polypeptide and M23 in a 301-aa polypeptide) previously identified in rat [Jung, J.S., Bhat, R.V., Preston, G.M., Guggino, W.B. & Agre, P. (1994) Proc. Natl. Acad. Sci. USA 91, 13052-13056]. Similar to other aquaporins, the AQP4 gene is composed of four exons encoding 127, 55, 27, and 92 amino acids separated by introns of 0.8, 0.3, and 5.2 kb. Unlike other aquaporins, an alternative coding initiation sequence (designated exon 0) was located 2.7 kb upstream of exon 1. When spliced together, M1 and the subsequent 10 amino acids are encoded by exon 0; the next 11 amino acids and M23 are encoded by exon 1. Transcription initiation sites have been mapped in the proximal promoters of exons 0 and 1. RNase protection revealed distinct transcripts corresponding to M1 and M23 mRNAs, and AQP4 immunoblots of cerebellum demonstrated reactive polypeptides of 31 and 34 kDa. Using a P1 and a lambda EMBL subclone, the chromosomal site of the human AQP4 gene was mapped to chromosome 18 at the junction of q11.2 and q12.1 by fluorescence in situ hybridization. These studies may now permit molecular characterization of AQP4 during human development and in clinical disorders.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

After birth, most of insulin-like growth factor I and II (IGFs) circulate as a ternary complex formed by the association of IGF binding protein 3-IGF complexes with a serum protein called acid-labile subunit (ALS). ALS retains the IGF binding protein-3-IGF complexes in the vascular compartment and extends the t1/2 of IGFs in the circulation. Synthesis of ALS occurs mainly in liver after birth and is stimulated by growth hormone. To study the basis for this regulation, we cloned and characterized the mouse ALS gene. Comparison of genomic and cDNA sequences indicated that the gene is composed of two exons separated by a 1126-bp intron. Exon 1 encodes the first 5 amino acids of the signal peptide and contributes the first nucleotide of codon 6. Exon 2 contributes the last 2 nt of codon 6 and encodes the remaining 17 amino acids of the signal peptide as well as the 580 amino acids of the mature protein. The polyadenylylation signal, ATTAAA, is located 241 bp from the termination codon. The cDNA and genomic DNA diverge 16 bp downstream from this signal. Transcription initiation was mapped to 11 sites over a 140-bp TATA-less region. The DNA fragment extending from nt -805 to -11 (ATG, +1) directed basal and growth hormone-regulated expression of a luciferase reporter plasmid in the rat liver cell line H4-II-E. Finally, the ALS gene was mapped to mouse chromosome 17 by fluorescence in situ hybridization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The gene encoding tissue-type plasminogen activator (t-PA) is an immediate response gene, downstream from CREB-1 and other constitutively expressed transcription factors, which is induced in the hippocampus during the late phase of long-term potentiation (L-LTP). Mice in which the t-PA gene has been ablated (t-PA-/-) showed no gross anatomical, electrophysiological, sensory, or motor abnormalities but manifest a selective reduction in L-LTP in hippocampal slices in both the Schaffer collateral-CA1 and mossy fiber-CA3 pathways. t-PA-/- mice also exhibit reduced potentiation by cAMP analogs and D1/D5 agonists. By contrast, hippocampal-dependent learning and memory were not affected in these mice, whereas performance was impaired on two-way active avoidance, a striatum-dependent task. These results provide genetic evidence that t-PA is a downstream effector gene important for L-LTP and show that modest impairment of L-LTP in CA1 and CA3 does not result in hippocampus-dependent behavioral phenotypes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Production of infectious HIV-1 virions is dependent on the processing of envelope glycoprotein gp160 by a host cell protease. The protease in human CD4+ T lymphocytes has not been unequivocally identified, yet members of the family of mammalian subtilisin-like protein convertases (SPCs), which are soluble or membrane-bound proteases of the secretory pathway, best fulfill the criteria. These proteases are required for proprotein maturation and cleave at paired basic amino acid motifs in numerous cellular and viral glycoprotein precursors, both in vivo and in vitro. To identify the gp160 processing protease, we have used reverse transcription-PCR and Northern blot analyses to ascertain the spectrum of SPC proteases in human CD4+ T cells. We have cloned novel members of the SPC family, known as the human PC6 genes. Two isoforms of the hPC6 protease are expressed in human T cells, hPC6A and the larger hPC6B. The patterns of SPC gene expression in human T cells has been compared with the furin-defective LoVo cell line, both of which are competent in the production of infectious HIV virions. This comparison led to the conclusion that the hPC6 gene products are the most likely candidates for the host cell protease responsible for HIV-1 gp160 processing in human CD4+ T cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The core oligosaccharide Glc3Man9GlcNAc2 is assembled at the membrane of the endoplasmic reticulum on the lipid carrier dolichyl pyrophosphate and transferred to selected asparagine residues of nascent polypeptide chains. This transfer is catalyzed by the oligosaccharyl transferase complex. Based on the synthetic phenotype of the oligosaccharyl transferase mutation wbp1 in combination with a deficiency in the assembly pathway of the oligosaccharide in Saccharomyces cerevisiae, we have identified the novel ALG9 gene. We conclude that this locus encodes a putative mannosyl transferase because deletion of the gene led to accumulation of lipid-linked Man6GlcNAc2 in vivo and to hypoglycosylation of secreted proteins. Using an approach combining genetic and biochemical techniques, we show that the assembly of the lipid-linked core oligosaccharide in the lumen of the endoplasmic reticulum occurs in a stepwise fashion.