140 resultados para Drosophila protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Response to the steroid hormone ecdysone in Drosophila is controlled by genetic regulatory hierarchies that include eight members of the nuclear receptor protein family. The DHR3 gene, located within the 46F early-late ecdysone-inducible chromosome puff, encodes an orphan nuclear receptor that recently has been shown to exert both positive and negative regulatory effects in the ecdysone-induced genetic hierarchies at metamorphosis. We used a reverse genetics approach to identify 11 DHR3 mutants from a pool of lethal mutations in the 46F region on the second chromosome. Two DHR3 mutations result in amino acid substitutions within the conserved DNA binding domain. Analysis of DHR3 mutants reveals that DHR3 function is required to complete embryogenesis. All DHR3 alleles examined result in nervous system defects in the embryo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phosphotyrosine-binding (PTB) domain is a recently identified protein module that has been characterized as binding to phosphopeptides containing an NPXpY motif (X = any amino acid). We describe here a novel peptide sequence recognized by the PTB domain from Drosophila Numb (dNumb), a protein involved in cell fate determination and asymmetric cell division during the development of the Drosophila nervous system. Using a Tyr-oriented peptide library to screen for ligands, the dNumb PTB domain was found to bind selectively to peptides containing a YIGPYφ motif (φ represents a hydrophobic residue). A synthetic peptide containing this sequence bound specifically to the isolated dNumb PTB domain in solution with a dissociation constant (Kd) of 5.78 ± 0.74 μM. Interestingly, the affinity of this peptide for the dNumb PTB domain was increased (Kd = 1.41 ± 0.10 μM) when the second tyrosine in the sequence was phosphorylated. Amino acid substitution studies of the phosphopeptide demonstrated that a core motif of sequence GP(p)Y is required for high-affinity binding to the dNumb PTB domain. Nuclear magnetic resonance experiments performed on isotopically labeled protein complexed with either Tyr- or pTyr-containing peptides suggest that the same set of amino acids in the dNumb PTB domain is involved in binding both phosphorylated and nonphosphorylated forms of the peptide. The in vitro selectivity of the dNumb PTB domain is therefore markedly different from those of the Shc and IRS-1 PTB domains, in that it interacts preferentially with a GP(p)Y motif, rather than NPXpY, and does not absolutely require ligand phosphorylation for binding. Our results suggest that the PTB domain is a versatile protein module, capable of exhibiting varied binding specificities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiprotein bridging factor 1 (MBF1) is a transcriptional cofactor that bridges between the TATA box-binding protein (TBP) and the Drosophila melanogaster nuclear hormone receptor FTZ-F1 or its silkworm counterpart BmFTZ-F1. A cDNA clone encoding MBF1 was isolated from the silkworm Bombyx mori whose sequence predicts a basic protein consisting of 146 amino acids. Bacterially expressed recombinant MBF1 is functional in interactions with TBP and a positive cofactor MBF2. The recombinant MBF1 also makes a direct contact with FTZ-F1 through the C-terminal region of the FTZ-F1 DNA-binding domain and stimulates the FTZ-F1 binding to its recognition site. The central region of MBF1 (residues 35–113) is essential for the binding of FTZ-F1, MBF2, and TBP. When the recombinant MBF1 was added to a HeLa cell nuclear extract in the presence of MBF2 and FTZ622 bearing the FTZ-F1 DNA-binding domain, it supported selective transcriptional activation of the fushi tarazu gene as natural MBF1 did. Mutations disrupting the binding of FTZ622 to DNA or MBF1, or a MBF2 mutation disrupting the binding to MBF1, all abolished the selective activation of transcription. These results suggest that tethering of the positive cofactor MBF2 to a FTZ-F1-binding site through FTZ-F1 and MBF1 is essential for the binding site-dependent activation of transcription. A homology search in the databases revealed that the deduced amino acid sequence of MBF1 is conserved across species from yeast to human.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ALL-1 gene positioned at 11q23 is directly involved in human acute leukemia either through a variety of chromosome translocations or by partial tandem duplications. ALL-1 is the human homologue of Drosophila trithorax which plays a critical role in maintaining proper spatial and temporal expression of the Antennapedia-bithorax homeotic genes determining the fruit fly’s body pattern. Utilizing specific antibodies, we found that the ALL-1 protein distributes in cultured cells in a nuclear punctate pattern. Several chimeric ALL-1 proteins encoded by products of the chromosome translocations and expressed in transfected cells showed similar speckles. Dissection of the ALL-1 protein identified within its ≈1,100 N-terminal residues three polypeptides directing nuclear localization and at least two main domains conferring distribution in dots. The latter spanned two short sequences conserved with TRITHORAX. Enforced nuclear expression of other domains of ALL-1, such as the PHD (zinc) fingers and the SET motif, resulted in uniform nonpunctate patterns. This indicates that positioning of the ALL-1 protein in subnuclear structures is mediated via interactions of ALL-1 N-terminal elements. We suggest that the speckles represent protein complexes which contain multiple copies of the ALL-1 protein and are positioned at ALL-1 target sites on the chromatin. Therefore, the role of the N-terminal portion of ALL-1 is to direct the protein to its target genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The trp gene of Drosophila encodes a subunit of a class of Ca2+-selective light-activated channels that carry the bulk of the phototransduction current. Transient receptor potential (TRP) homologs have been identified throughout animal phylogeny. In vertebrates, TRP-related channels have been suggested to mediate “store-operated Ca2+ entry,” which is important in Ca2+ homeostasis in a wide variety of cell types. However, the mechanisms of activation and regulation of the TRP channel are not known. Here, we report on the Drosophila inaF gene, which encodes a highly eye-enriched protein, INAF, that appears to be required for TRP channel function. A null mutation in this gene significantly reduces the amount of the TRP protein and, in addition, specifically affects the TRP channel function so as to nearly shut down its activity. The inaF mutation also dramatically suppresses the severe degeneration caused by a constitutively active mutation in the trp gene. Although the reduction in the amount of the TRP protein may contribute to these phenotypes, several lines of evidence support the view that inaF mutations also more directly affect the TRP channel function, suggesting that the INAF protein may have a regulatory role in the channel function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A K+ channel gene has been cloned from Drosophila melanogaster by complementation in Saccharomyces cerevisiae cells defective for K+ uptake. Naturally expressed in the neuromuscular tissues of adult flies, this gene confers K+ transport capacity on yeast cells when heterologously expressed. In Xenopus laevis oocytes, expression yields an ungated K+-selective current whose attributes resemble the “leak” conductance thought to mediate the resting potential of vertebrate myelinated neurons but whose molecular nature has long remained elusive. The predicted protein has two pore (P) domains and four membrane-spanning helices and is a member of a newly recognized K+ channel family. Expression of the channel in flies and yeast cells makes feasible studies of structure and in vivo function using genetic approaches that are not possible in higher animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The TATA-binding protein (TBP)-related factor TRF1, has been described in Drosophila and a related protein, TRF2, has been found in a variety of higher eukaryotes. We report that human (h)TRF2 is encoded by two mRNAs with common protein coding but distinct 5′ nontranslated regions. One mRNA is expressed ubiquitously (hTRF2-mRNA1), whereas the other (hTRF2-mRNA2) shows a restricted expression pattern and is extremely abundant in testis. In addition, we show that hTRF2 forms a stable stoichiometric complex with hTFIIA, but not with TAFs, in HeLa cells stably transfected with flag-tagged hTRF2. Neither recombinant human (rh)TRF2 nor the native flag⋅hTRF2-TFIIA complex is able to replace TBP or TFIID in basal or activated transcription from various RNA polymerase II promoters. Instead, rhTRF2, but not the flag⋅hTRF2–TFIIA complex, moderately inhibits basal or activated transcription in the presence of rhTBP or flag⋅TFIID. This effect is either completely (TBP-mediated transcription) or partially (TFIID-mediated transcription) counteracted by addition of free TFIIA. Neither rhTRF2 nor flag⋅hTRF2–TFIIA has any effect on the repression of TFIID-mediated transcription by negative cofactor-2 (NC2) and neither substitutes for TBP in RNA polymerase III-mediated transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The small GTPases Cdc42 and Rac regulate a variety of biological processes, including actin polymerization, cell proliferation, and JNK/mitogen-activated protein kinase activation, conceivably via distinct effectors. Whereas the effector for mitogen-activated protein kinase activation appears to be p65PAK, the identity of effector(s) for actin polymerization remains unclear. We have found a putative effector for Drosophila Cdc42, Genghis Khan (Gek), which binds to Dcdc42 in a GTP-dependent and effector domain-dependent manner. Gek contains a predicted serine/threonine kinase catalytic domain that is 63% identical to human myotonic dystrophy protein kinase and has protein kinase activities. It also possesses a large coiled-coil domain, a putative phorbol ester binding domain, a pleckstrin homology domain, and a Cdc42 binding consensus sequence that is required for its binding to Dcdc42. To study the in vivo function of gek, we generated mutations in the Drosophila gek locus. Egg chambers homozygous for gek mutations exhibit abnormal accumulation of F-actin and are defective in producing fertilized eggs. These phenotypes can be rescued by a wild-type gek transgene. Our results suggest that this multidomain protein kinase is an effector for the regulation of actin polymerization by Cdc42.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural fate specification in Drosophila is promoted by the products of the proneural genes, such as those of the achaete–scute complex, and antagonized by the products of the Enhancer of split [E(spl)] complex, hairy, and extramacrochaetae. As all these proteins bear a helix-loop-helix (HLH) dimerization domain, we investigated their potential pairwise interactions using the yeast two-hybrid system. The fidelity of the system was established by its ability to closely reproduce the already documented interactions among Da, Ac, Sc, and Extramacrochaetae. We show that the seven E(spl) basic HLH proteins can form homo- and heterodimers inter-se with distinct preferences. We further show that a subset of E(spl) proteins can heterodimerize with Da, another subset can heterodimerize with proneural proteins, and yet another with both, indicating specialization within the E(spl) family. Hairy displays no interactions with any of the HLH proteins tested. It does interact with the non-HLH protein Groucho, which itself interacts with all E(spl) basic HLH proteins, but with none of the proneural proteins or Da. We investigated the structural requirements for some of these interactions by site-specific and deletion mutagenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-hybrid technology provides a simple way to isolate small peptide aptamers that specifically recognize and strongly bind to a protein of interest. These aptamers have the potential to dominantly interfere with specific activities of their target proteins and, therefore, could be used as in vivo inhibitors. Here we explore the ability to use peptide aptamers as in vivo inhibitors by expressing aptamers directed against cell cycle regulators in Drosophila. We expressed two peptide aptamers, each of which specifically recognizes one of the two essential cyclin-dependent kinases (Cdks), DmCdk1 and DmCdk2, in Drosophila. Expression of each Cdk aptamer during organogenesis caused adult eye defects typical of those caused by cell cycle inhibition. Co-overexpression of DmCdk1 or DmCdk2 resulted in suppression of the eye phenotypes, indicating that each aptamer interacts with a Cdk target in vivo and suggesting that these peptides disrupt normal eye development by inhibiting Cdk function. Moreover, the specificity of each aptamer for one of the two Cdks as determined in two-hybrid assays was retained in Drosophila. Combined, our results demonstrate that peptide aptamers generated by yeast two-hybrid methods can serve as inhibitory reagents to target specific proteins in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Drosophila melanogaster Suppressor of forked [Su(f)] protein shares homology with the yeast RNA14 protein and the 77-kDa subunit of human cleavage stimulation factor, which are proteins involved in mRNA 3′ end formation. This suggests a role for Su(f) in mRNA 3′ end formation in Drosophila. The su(f) gene produces three transcripts; two of them are polyadenylated at the end of the transcription unit, and one is a truncated transcript, polyadenylated in intron 4. Using temperature-sensitive su(f) mutants, we show that accumulation of the truncated transcript requires wild-type Su(f) protein. This suggests that the Su(f) protein autoregulates negatively its accumulation by stimulating 3′ end formation of the truncated su(f) RNA. Cloning of su(f) from Drosophila virilis and analysis of its RNA profile suggest that su(f) autoregulation is conserved in this species. Sequence comparison between su(f) from both species allows us to point out three conserved regions in intron 4 downstream of the truncated RNA poly(A) site. These conserved regions include the GU-rich downstream sequence involved in poly(A) site definition. Using transgenes truncated within intron 4, we show that sequence up to the conserved GU-rich domain is sufficient for production of the truncated RNA and for regulation of this production by su(f). Our results indicate a role of su(f) in the regulation of poly(A) site utilization and an important role of the GU-rich sequence for this regulation to occur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epitopes depending on three-dimensional folding of proteins have during recent years been acknowledged to be main targets for many autoantibodies. However, a detailed resolution of conformation-dependent epitopes has to date not been achieved in spite of its importance for understanding the complex interaction between an autoantigen and the immune system. In analysis of immunodominant epitopes of the U1-70K protein, the major autoantigen recognized by human ribonucleoprotein (RNP)-positive sera, we have used diversely mutated recombinant Drosophila melanogaster 70K proteins as antigens in assays for human anti-RNP antibodies. Thus, the contribution of individual amino acids to antigenicity could be assayed with the overall structure of the major antigenic domain preserved, and analysis of how antigenicity can be reconstituted rather than obliterated was enabled. Our results reveal that amino acid residue 125 is situated at a crucial position for recognition by human anti-RNP autoantibodies and that flanking residues at positions 119–126 also appear to be of utmost importance for recognition. These results are discussed in relation to structural models of RNA-binding domains, and tertiary structure modeling indicates that the residues 119–126 are situated at easily accessible positions in the end of an α-helix in the RNA binding region. This study identifies a major conformation-dependent epitope of the U1-70K protein and demonstrates the significance of individual amino acids in conformational epitopes. Using this model, we believe it will be possible to analyze other immunodominant regions in which protein conformation has a strong impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

β-catenin, the vertebrate homolog of the Drosophila Armadillo protein, has been shown to have dual cellular functions, as a component of both the cadherin-catenin cell adhesion complex and the Wnt signaling pathway. At Wnt signaling, β-catenin becomes stabilized in the cytoplasm and subsequently available for interaction with transcription factors of the lymphocyte enhancer factor-1/T-cell factor family, resulting in a nuclear localization of β-catenin. Although β-catenin does not bind DNA directly, its carboxyl- and amino-terminal regions exhibit a transactivating activity still not well understood molecularly. Here we report the identification of an interaction partner of β-catenin, a nuclear protein designated Pontin52. Pontin52 binds β-catenin in the region of Armadillo repeats 2–5 and, more importantly, also binds the TATA box binding protein. We provide evidence for an in vivo multiprotein complex composed of Pontin52, β-catenin, and lymphocyte enhancer factor-1/T-cell factor. Our results suggest involvement of Pontin52 in the nuclear function of β-catenin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Drosophila, the chromosomal region 75C1–2 contains at least three genes, reaper (rpr), head involution defective (hid), and grim, that have important functions in the activation of programmed cell death. To better understand how cells are killed by these genes, we have utilized a well defined set of embryonic central nervous system midline cells that normally exhibit a specific pattern of glial cell death. In this study we show that both rpr and hid are expressed in dying midline cells and that the normal pattern of midline cell death requires the function of multiple genes in the 75C1–2 interval. We also utilized the P[UAS]/P[Gal4] system to target expression of rpr and hid to midline cells. Targeted expression of rpr or hid alone was not sufficient to induce ectopic midline cell death. However, expression of both rpr and hid together rapidly induced ectopic midline cell death that resulted in axon scaffold defects characteristic of mutants with abnormal midline cell development. Midline-targeted expression of the baculovirus p35 protein, a caspase inhibitor, blocked both normal and ectopic rpr- and hid-induced cell death. Taken together, our results suggest that rpr and hid are expressed together and cooperate to induce programmed cell death during development of the central nervous system midline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rad is the prototypic member of a new class of Ras-related GTPases. Purification of the GTPase-activating protein (GAP) for Rad revealed nm23, a putative tumor metastasis suppressor and a development gene in Drosophila. Antibodies against nm23 depleted Rad-GAP activity from human skeletal muscle cytosol, and bacterially expressed nm23 reconstituted the activity. The GAP activity of nm23 was specific for Rad, was absent with the S105N putative dominant negative mutant of Rad, and was reduced with mutations of nm23. In the presence of ATP, GDP⋅Rad was also reconverted to GTP⋅Rad by the nucleoside diphosphate (NDP) kinase activity of nm23. Simultaneously, Rad regulated nm23 by enhancing its NDP kinase activity and decreasing its autophosphorylation. Melanoma cells transfected with wild-type Rad, but not the S105N-Rad, showed enhanced DNA synthesis in response to serum; this effect was lost with coexpression of nm23. Thus, the interaction of nm23 and Rad provides a potential novel mechanism for bidirectional, bimolecular regulation in which nm23 stimulates both GTP hydrolysis and GTP loading of Rad whereas Rad regulates activity of nm23. This interaction may play important roles in the effects of Rad on glucose metabolism and the effects of nm23 on tumor metastasis and developmental regulation.