234 resultados para Cytosolic sulfotransferases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lutropin (LH) and other glycoproteins bearing oligosaccharides with the terminal sequence SO4-4-GalNAcβ1,4GlcNAcβ1,4Man- (S4GGnM) are rapidly removed from the circulation by an S4GGnM-specific receptor (S4GGnM-R) expressed at the surface of hepatic endothelial cells. The S4GGnM-R isolated from rat liver is closely related to the macrophage mannose-specific receptor (Man-R) isolated from rat lung both antigenically and structurally. The S4GGnM-R and Man-R isolated from these tissues nonetheless differ in their ability to bind ligands bearing terminal GalNAc-4-SO4 or Man. In this paper, we have explored the structural relationship between the Man-R and the S4GGnM-R by examining the properties of the recombinant Man-R in the form of a transmembrane protein and a soluble chimeric fusion protein in which the transmembrane and cytosolic domains have been replaced by the Fc region of human IgG1. Like the S4GGnM-R isolated from liver, the chimeric fusion protein is able to bind ligands terminating with GalNAc-4-SO4 and Man at independent sites. When expressed in CHO cells the recombinant Man-R is able to mediate the uptake of ligands bearing either terminal GalNAc-4-SO4 or terminal Man. We propose that the Man-R be renamed the Man/S4GGnM receptor on the basis of its multiple and independent specificities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron regulatory proteins (IRPs) are cytoplasmic RNA binding proteins that are central components of a sensory and regulatory network that modulates vertebrate iron homeostasis. IRPs regulate iron metabolism by binding to iron responsive element(s) (IREs) in the 5′ or 3′ untranslated region of ferritin or transferrin receptor (TfR) mRNAs. Two IRPs, IRP1 and IRP2, have been identified previously. IRP1 exhibits two mutually exclusive functions as an RNA binding protein or as the cytosolic isoform of aconitase. We demonstrate that the Ba/F3 family of murine pro-B lymphocytes represents the first example of a mammalian cell line that fails to express IRP1 protein or mRNA. First, all of the IRE binding activity in Ba/F3-gp55 cells is attributable to IRP2. Second, synthesis of IRP2, but not of IRP1, is detectable in Ba/F3-gp55 cells. Third, the Ba/F3 family of cells express IRP2 mRNA at a level similar to other murine cell lines, but IRP1 mRNA is not detectable. In the Ba/F3 family of cells, alterations in iron status modulated ferritin biosynthesis and TfR mRNA level over as much as a 20- and 14-fold range, respectively. We conclude that IRP1 is not essential for regulation of ferritin or TfR expression by iron and that IRP2 can act as the sole IRE-dependent mediator of cellular iron homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HIV-1 specifically incorporates the peptidyl prolyl isomerase cyclophilin A (CyPA), the cytosolic receptor for the immunosuppressant cyclosporin A (CsA). HIV-1 replication is inhibited by CsA as well as by nonimmunosuppressive CsA analogues that bind to CyPA and interfere with its virion association. In contrast, the related simian immunodeficiency virus SIVmac, which does not interact with CyPA, is resistant to these compounds. The incorporation of CyPA into HIV-1 virions is mediated by a specific interaction between the active site of the enzyme and the capsid (CA) domain of the HIV-1 Gag polyprotein. We report here that the transfer of HIV-1 CA residues 86–93, which form part of an exposed loop, to the corresponding position in SIVmac resulted in the efficient incorporation of CyPA and conferred an HIV-1-like sensitivity to a nonimmunosuppressive cyclosporin. HIV-1 CA residues 86–90 were also sufficient to transfer the ability to efficiently incorporate CyPA, provided that the length of the CyPA-binding loop was preserved. However, the resulting SIVmac mutant required the presence of cyclosporin for efficient virus replication. The results indicate that the presence or absence of a type II tight turn adjacent to the primary CyPA-binding site determines whether CyPA incorporation enhances or inhibits viral replication. By demonstrating that CyPA-binding-site residues can induce cyclosporin sensitivity in a heterologous context, this study provides direct in vivo evidence that the exposed loop between helices IV and V of HIV-1 CA not merely constitutes a docking site for CyPA but is a functional target of this cellular protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four unrelated patients are described with a syndrome that included developmental delay, seizures, ataxia, recurrent infections, severe language deficit, and an unusual behavioral phenotype characterized by hyperactivity, short attention span, and poor social interaction. These manifestations appeared within the first few years of life. Each patient displayed abnormalities on EEG. No unusual metabolites were found in plasma or urine, and metabolic testing was normal except for persistent hypouricosuria. Investigation of purine and pyrimidine metabolism in cultured fibroblasts derived from these patients showed normal incorporation of purine bases into nucleotides but decreased incorporation of uridine. De novo synthesis of purines and cellular phosphoribosyl pyrophosphate content also were moderately decreased. The distribution of incorporated purines and pyrimidines did not reveal a pattern suggestive of a deficient enzyme activity. Assay of individual enzymes in fibroblast lysates showed no deficiencies. However, the activity of cytosolic 5′-nucleotidase was elevated 6- to 10-fold. Based on the possibility that the observed increased catabolic activity and decreased pyrimidine salvage might be causing a deficiency of pyrimidine nucleotides, the patients were treated with oral pyrimidine nucleoside or nucleotide compounds. All patients showed remarkable improvement in speech and behavior as well as decreased seizure activity and frequency of infections. A double-blind placebo trial was undertaken to ascertain the efficacy of this supplementation regimen. Upon replacement of the supplements with placebo, all patients showed rapid regression to their pretreatment states. These observations suggest that increased nucleotide catabolism is related to the symptoms of these patients, and that the effects of this increased catabolism are reversed by administration of uridine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interactions between calmodulin, inositol 1,4,5-trisphosphate (InsP3), and pure cerebellar InsP3 receptors were characterized by using a scintillation proximity assay. In the absence of Ca2+, 125I-labeled calmodulin reversibly bound to multiple sites on InsP3 receptors and Ca2+ increased the binding by 190% ± 10%; the half-maximal effect occurred when the Ca2+ concentration was 184 ± 14 nM. In the absence of Ca2+, calmodulin caused a reversible, concentration-dependent (IC50 = 3.1 ± 0.2 μM) inhibition of [3H]InsP3 binding by decreasing the affinity of the receptor for InsP3. This effect was similar at all Ca2+ concentrations, indicating that the site through which calmodulin inhibits InsP3 binding has similar affinities for calmodulin and Ca2+-calmodulin. Calmodulin (10 μM) inhibited the Ca2+ release from cerebellar microsomes evoked by submaximal, but not by maximal, concentrations of InsP3. Tonic inhibition of InsP3 receptors by the high concentrations of calmodulin within cerebellar Purkinje cells may account for their relative insensitivity to InsP3 and limit spontaneous activation of InsP3 receptors in the dendritic spines. Inhibition of InsP3 receptors by calmodulin at all cytosolic Ca2+ concentrations, together with the known redistribution of neuronal calmodulin evoked by protein kinases and Ca2+, suggests that calmodulin may also allow both feedback control of InsP3 receptors and integration of inputs from other signaling pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurotoxicity induced by overstimulation of N-methyl-d-aspartate (NMDA) receptors is due, in part, to a sustained rise in intracellular Ca2+; however, little is known about the ensuing intracellular events that ultimately result in cell death. Here we show that overstimulation of NMDA receptors by relatively low concentrations of glutamate induces apoptosis of cultured cerebellar granule neurons (CGNs) and that CGNs do not require new RNA or protein synthesis. Glutamate-induced apoptosis of CGNs is, however, associated with a concentration- and time-dependent activation of the interleukin 1β-converting enzyme (ICE)/CED-3-related protease, CPP32/Yama/apopain (now designated caspase 3). Further, the time course of caspase 3 activation after glutamate exposure of CGNs parallels the development of apoptosis. Moreover, glutamate-induced apoptosis of CGNs is almost completely blocked by the selective cell permeable tetrapeptide inhibitor of caspase 3, Ac-DEVD-CHO but not by the ICE (caspase 1) inhibitor, Ac-YVAD-CHO. Western blots of cytosolic extracts from glutamate-exposed CGNs reveal both cleavage of the caspase 3 substrate, poly(ADP-ribose) polymerase, as well as proteolytic processing of pro-caspase 3 to active subunits. Our data demonstrate that glutamate-induced apoptosis of CGNs is mediated by a posttranslational activation of the ICE/CED-3-related cysteine protease caspase 3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human deoxyribonucleoside kinases are required for the pharmacological activity of several clinically important anticancer and antiviral nucleoside analogs. Human deoxycytidine kinase and thymidine kinase 1 are described as cytosolic enzymes in the literature, whereas human deoxyguanosine kinase and thymidine kinase 2 are believed to be located in the mitochondria. We expressed the four human deoxyribonucleoside kinases as fusion proteins with the green fluorescent protein to study their intracellular locations in vivo. Our data showed that the human deoxycytidine kinase is located in the cell nucleus and the human deoxyguanosine kinase is located in the mitochondria. The fusion proteins between green fluorescent protein and thymidine kinases 1 and 2 were both predominantly located in the cytosol. Site-directed mutagenesis of a putative nuclear targeting signal, identified in the primary structure of deoxycytidine kinase, completely abolished nuclear import of the protein. Reconstitution of a deoxycytidine kinase-deficient cell line with the wild-type nuclear or the mutant cytosolic enzymes both restored sensitivity toward anticancer nucleoside analogs. This paper reports that a deoxyribonucleoside kinase is located in the cell nucleus and we discuss the implications for deoxyribonucleotide synthesis and phosphorylation of nucleoside analogs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cytoplasmic region of Fas, a mammalian death factor receptor, shares a limited homology with reaper, an apoptosis-inducing protein in Drosophila. Expression of either the Fas cytoplasmic region (FasC) or of reaper in Drosophila cells caused cell death. The death process induced by FasC or reaper was inhibited by crmA or p35, suggesting that its death process is mediated by caspase-like proteases. Both Ac-YVAD aldehyde and Ac-DEVD aldehyde, specific inhibitors of caspase 1- and caspase 3-like proteases, respectively, inhibited the FasC-induced death of Drosophila cells. However, the cell death induced by reaper was inhibited by Ac-DEVD aldehyde, but not by Ac-YVAD aldehyde. A caspase 1-like protease activity that preferentially recognizes the YVAD sequence gradually increased in the cytosolic fraction of the FasC-activated cells, whereas the caspase 3-like protease activity recognizing the DEVD sequence was observed in the reaper-activated cells. Partial purification and biochemical characterization of the proteases indicated that there are at least three distinct caspase-like proteases in Drosophila cells, which are differentially activated by FasC and reaper. The conservation of the Fas-death signaling pathway in Drosophila cells, which is distinct from that for reaper, may indicate that cell death in Drosophila is controlled not only by the reaper suicide gene, but also by a Fas-like killer gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine the role of intracellular Ca2+ in compaction, the first morphogenetic event in embryogenesis, we analyzed preimplantation mouse embryos under several decompacting conditions, including depletion of extracellular Ca2+, blocking of Ca2+ channels, and inhibition of microfilaments, calmodulin, and intracellular Ca2+ release. Those treatments induced decompaction of mouse morulae and simultaneously induced changes in cytosolic free Ca2+ concentration and deregionalization of E-cadherin and fodrin. When morulae were allowed to recompact, the location of both proteins recovered. In contrast, actin did not change its cortical location with compaction nor with decompaction-recompaction. Calmodulin localized in areas opposite to cell–cell contacts in eight-cell stage embryos before and after compaction. Inhibition of calmodulin with trifluoperazine induced its delocalization while morulae decompacted. A nonspecific rise of intracellular free Ca2+ provoked by ionomycin did not affect the compacted shape. Moreover, the same decompacting treatments when applied to uncompacted embryos did not produce any change in intracellular Ca2+. Our results demonstrate that in preimplantation mouse embryos experimentally induced stage-specific changes of cell shape are accompanied by changes of intracellular free Ca2+ and redistribution of the cytoskeleton-related proteins E-cadherin, fodrin, and calmodulin. We conclude that intracellular Ca2+ specifically is involved in compaction and probably regulates the function and localization of cytoskeleton elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A challenge for subunit vaccines whose goal is to elicit CD8+ cytotoxic T lymphocytes (CTLs) is to deliver the antigen to the cytosol of the living cell, where it can be processed for presentation by major histocompatibility complex (MHC) class I molecules. Several bacterial toxins have evolved to efficiently deliver catalytic protein moieties to the cytosol of eukaryotic cells. Anthrax lethal toxin consists of two distinct proteins that combine to form the active toxin. Protective antigen (PA) binds to cells and is instrumental in delivering lethal factor (LF) to the cell cytosol. To test whether the lethal factor protein could be exploited for delivery of exogenous proteins to the MHC class I processing pathway, we constructed a genetic fusion between the amino-terminal 254 aa of LF and the gp120 portion of the HIV-1 envelope protein. Cells treated with this fusion protein (LF254-gp120) in the presence of PA effectively processed gp120 and presented an epitope recognized by HIV-1 gp120 V3-specific CTL. In contrast, when cells were treated with the LF254-gp120 fusion protein and a mutant PA protein defective for translocation, the cells were not able to present the epitope and were not lysed by the specific CTL. The entry into the cytosol and dependence on the classical cytosolic MHC class I pathway were confirmed by showing that antigen presentation by PA + LF254-gp120 was blocked by the proteasome inhibitor lactacystin. These data demonstrate the ability of the LF amino-terminal fragment to deliver antigens to the MHC class I pathway and provide the basis for the development of novel T cell vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aryloxyphenoxypropionates, inhibitors of the plastid acetyl-CoA carboxylase (ACC) of grasses, also inhibit Toxoplasma gondii ACC. Clodinafop, the most effective of the herbicides tested, inhibits growth of T. gondii in human fibroblasts by 70% at 10 μM in 2 days and effectively eliminates the parasite in 2–4 days at 10–100 μM. Clodinafop is not toxic to the host cell even at much higher concentrations. Parasite growth inhibition by different herbicides is correlated with their ability to inhibit ACC enzyme activity, suggesting that ACC is a target for these agents. Fragments of genes encoding the biotin carboxylase domain of multidomain ACCs of T. gondii, Plasmodium falciparum, Plasmodium knowlesi, and Cryptosporidium parvum were sequenced. One T. gondii ACC (ACC1) amino acid sequence clusters with P. falciparum ACC, P. knowlesi ACC, and the putative Cyclotella cryptica chloroplast ACC. Another sequence (ACC2) clusters with that of C. parvum ACC, probably the cytosolic form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear pore complexes (NPCs) mediate both active transport and passive diffusion across the nuclear envelope (NE). Determination of NE electrical conductance, however, has been confounded by the lack of an appropriate technical approach. The nuclear patch clamp technique is restricted to preparations with electrically closed NPCs, and microelectrode techniques fail to resolve the extremely low input resistance of large oocyte nuclei. To address the problem, we have developed an approach for measuring the NE electrical conductance of Xenopus laevis oocyte nuclei. The method uses a tapered glass tube, which narrows in its middle part to 2/3 of the diameter of the nucleus. The isolated nucleus is sucked into the narrow part of the capillary by gentle fluid movement, while the resulting change in electrical resistance is monitored. NE electrical conductance was unexpectedly large (7.9 ± 0.34 S/cm2). Evaluation of NPC density by atomic force microscopy showed that this conductance corresponded to 3.7 × 106 NPCs. In contrast to earlier conclusions drawn from nuclear patch clamp experiments, NPCs were in an electrically “open” state with a mean single NPC electrical conductance of 1.7 ± 0.07 nS. Enabling or blocking of active NPC transport (accomplished by the addition of cytosolic extracts or gp62-directed antibodies) revealed this large NPC conductance to be independent of the activation state of the transport machinery located in the center of NPCs. We conclude that peripheral channels, which are presumed to reside in the NPC subunits, establish a high ionic permeability that is virtually independent of the active protein transport mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brefeldin A (BFA) inhibited the exchange of ADP ribosylation factor (ARF)-bound GDP for GTP by a Golgi-associated guanine nucleotide-exchange protein (GEP) [Helms, J. B. & Rothman, J. E. (1992) Nature (London) 360, 352–354; Donaldson, J. G., Finazzi, D. & Klausner, R. D. (1992) Nature (London) 360, 350–352]. Cytosolic ARF GEP was also inhibited by BFA, but after purification from bovine brain and rat spleen, it was no longer BFA-sensitive [Tsai, S.-C., Adamik, R., Moss, J. & Vaughan, M. (1996) Proc. Natl. Acad. Sci. USA 93, 305–309]. We describe here purification from bovine brain cytosol of a BFA-inhibited GEP. After chromatography on DEAE–Sephacel, hydroxylapatite, and Mono Q and precipitation at pH 5.8, GEP was eluted from Superose 6 as a large molecular weight complex at the position of thyroglobulin (≈670 kDa). After SDS/PAGE of samples from column fractions, silver-stained protein bands of ≈190 and 200 kDa correlated with activity. BFA-inhibited GEP activity of the 200-kDa protein was demonstrated following electroelution from the gel and renaturation by dialysis. Four tryptic peptides from the 200-kDa protein had amino acid sequences that were 47% identical to sequences in Sec7 from Saccharomyces cerevisiae (total of 51 amino acids), consistent with the view that the BFA-sensitive 200-kDa protein may be a mammalian counterpart of Sec7 that plays a similar role in cellular vesicular transport and Sec7 may be a GEP for one or more yeast ARFs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using truncated forms of recombinant yeast karyopherins α and β in in vitro binding assays, we mapped the regions of karyopherin α that bind to karyopherin β and the regions of karyopherin β that interact with karyopherin α and with Ran-GTP. Karyopherin α’s binding region for karyopherin β was localized to its N-terminal domain, which contains several clusters of basic residues, whereas karyopherin β’s binding region for karyopherin α was localized to an internal region containing two clusters of acidic residues. Karyopherin β’s binding region for Ran-GTP overlaps with that for karyopherin α and comprises at least one of the two acidic clusters required for karyopherin α binding in addition to further downstream determinants not required for karyopherin α binding. Overexpression in yeast of fragments containing either karyopherin β’s binding region for α and Ran-GTP or karyopherin α’s binding region for β resulted in sequestration of most of the cytosolic karyopherin α or karyopherin β, respectively, in complexes containing the truncated proteins. As these binding region-containing fragments lack other domains required for function of the corresponding protein, the overexpression of either fragment also inhibited in vivo nuclear import of a model reporter protein as well as cell growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In plants, the biosynthesis of isopentenyl diphosphate, the central precursor of all isoprenoids, proceeds via two separate pathways. The cytosolic compartment harbors the mevalonate pathway, whereas the newly discovered deoxyxylulose 5-phosphate pathway, which also operates in certain eubacteria, including Escherichia coli, is localized to plastids. Only the first two steps of the plastidial pathway, which involve the condensation of pyruvate and glyceraldehyde 3-phosphate to deoxyxylulose 5-phosphate followed by intramolecular rearrangement and reduction to 2-C-methylerythritol 4-phosphate, have been established. Here we report the cloning from peppermint (Mentha × piperita) and E. coli, and expression, of a kinase that catalyzes the phosphorylation of isopentenyl monophosphate as the last step of this biosynthetic sequence to isopentenyl diphosphate. The plant gene defines an ORF of 1,218 bp that, when the proposed plastidial targeting sequence is excluded, corresponds to ≈308 aa with a mature size of ≈33 kDa. The E. coli gene (ychB), which is located at 27.2 min of the chromosomal map, consists of 852 nt, encoding a deduced enzyme of 283 aa with a size of 31 kDa. These enzymes represent a conserved class of the GHMP family of kinases, which includes galactokinase, homoserine kinase, mevalonate kinase, and phosphomevalonate kinase, with homologues in plants and several eubacteria. Besides the preferred substrate isopentenyl monophosphate, the recombinant peppermint and E. coli kinases also phosphorylate isopentenol, and, much less efficiently, dimethylallyl alcohol, but dimethylallyl monophosphate does not serve as a substrate. Incubation of secretory cells isolated from peppermint glandular trichomes with isopentenyl monophosphate resulted in the rapid production of monoterpenes and sesquiterpenes, confirming that isopentenyl monophosphate is the physiologically relevant, terminal intermediate of the deoxyxylulose 5-phosphate pathway.